Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors

Introduced by Fabio Sauli in 1997, the Gas Electron Multiplier (GEM) technology is commonly used in many high energy physics experiments. It has proven unique value in many scientific domains and adaptability to new research tasks. Typically, the GEM detectors are made with polyimide films (GEM foil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2022-08, Vol.342, p.113656, Article 113656
Hauptverfasser: Babij, Michał, Bielówka, Piotr, Dąbrowski, Arkadiusz, Nawrot, Witold, Czok, Mateusz, Malecha, Karol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113656
container_title Sensors and actuators. A. Physical.
container_volume 342
creator Babij, Michał
Bielówka, Piotr
Dąbrowski, Arkadiusz
Nawrot, Witold
Czok, Mateusz
Malecha, Karol
description Introduced by Fabio Sauli in 1997, the Gas Electron Multiplier (GEM) technology is commonly used in many high energy physics experiments. It has proven unique value in many scientific domains and adaptability to new research tasks. Typically, the GEM detectors are made with polyimide films (GEM foils and readout plate), halogen-free FR4 epoxy resins (supporting and stretching structures), conductive copper layers, etc. Because of outgassing and ageing, those components release in time residues of dust, moisture, and vapors. The residues pollute the gas mixture and consequently degrade the detector's working parameters. To avoid such a problem, devices can be constantly flushed by pure gas from an external source. This solution is not optimal for autonomous space detectors because of volume and weight limitations. The paper describes the successive work to develop an autonomous GEM detector without a gas mixture circulation system. As a solution, the use of Low-Temperature Cofired Ceramics (LTCC) materials was proposed and validated. The dedicated LTCC readout plates were manufactured and tested, and results are presented. [Display omitted] •Optimization of Gas Electron Multiplier particle detectors for space application.•Fabrication of dedicated readout boards made with Low-Temperature Cofired Ceramics.•Optimization of 2D orthogonal LTCC strips readout board for the equal charge distribution.•Performance of LTCC boards with respect to polyimide-based design.
doi_str_mv 10.1016/j.sna.2022.113656
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733413557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424722002941</els_id><sourcerecordid>2733413557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1707-b11c0c0bb851ae6c258d514887797ed8e1ea14e08bcb4ef4217d3877d89ba0de3</originalsourceid><addsrcrecordid>eNp9UEFOwzAQtBBIlMIDuFninOK1kzgVJ1SVgtSKSzlbjr1BidK42AkSL-Hat5SP4SqcOY20M7O7M4TcApsBg_y-mYVOzzjjfAYg8iw_IxMopEgEy-fnZMLmPE1SnspLchVCwxgTQsoJwY3uhkqbfvB1905dRTWV7Hj4-T4eTrjbcbreLhY09L7eU2zR9N5ZpB61dUNPK-fpSge6HJmOboa2r_dtjZ5a7OPQ-XBNLirdBrz5wyl5e1puF8_J-nX1snhcJwYkk0kJYJhhZVlkoDE3PCtsBmlRSDmXaAsE1JAiK0pTplilHKQVkbTFvNTMopiSu3Hv3ruPAUOvGjf4Lp5UXAqRgsgyGVUwqox3IXis1N7XO-2_FDB1alM1KrapTm2qsc3oeRg9GN__jOFUMDV2Bm3tY0ZlXf2P-xd_lX7a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733413557</pqid></control><display><type>article</type><title>Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors</title><source>Elsevier ScienceDirect Journals</source><creator>Babij, Michał ; Bielówka, Piotr ; Dąbrowski, Arkadiusz ; Nawrot, Witold ; Czok, Mateusz ; Malecha, Karol</creator><creatorcontrib>Babij, Michał ; Bielówka, Piotr ; Dąbrowski, Arkadiusz ; Nawrot, Witold ; Czok, Mateusz ; Malecha, Karol</creatorcontrib><description>Introduced by Fabio Sauli in 1997, the Gas Electron Multiplier (GEM) technology is commonly used in many high energy physics experiments. It has proven unique value in many scientific domains and adaptability to new research tasks. Typically, the GEM detectors are made with polyimide films (GEM foils and readout plate), halogen-free FR4 epoxy resins (supporting and stretching structures), conductive copper layers, etc. Because of outgassing and ageing, those components release in time residues of dust, moisture, and vapors. The residues pollute the gas mixture and consequently degrade the detector's working parameters. To avoid such a problem, devices can be constantly flushed by pure gas from an external source. This solution is not optimal for autonomous space detectors because of volume and weight limitations. The paper describes the successive work to develop an autonomous GEM detector without a gas mixture circulation system. As a solution, the use of Low-Temperature Cofired Ceramics (LTCC) materials was proposed and validated. The dedicated LTCC readout plates were manufactured and tested, and results are presented. [Display omitted] •Optimization of Gas Electron Multiplier particle detectors for space application.•Fabrication of dedicated readout boards made with Low-Temperature Cofired Ceramics.•Optimization of 2D orthogonal LTCC strips readout board for the equal charge distribution.•Performance of LTCC boards with respect to polyimide-based design.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2022.113656</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Autonomous vehicles ; CubeSat ; Detectors ; Epoxy resins ; Foils ; Gas Electron Multiplier (GEM) detector ; Gas mixtures ; Low temperature ; Low Temperature Cofired Ceramics (LTCC) ; Micro Pattern Gas Detector (MPGD) ; Moisture effects ; Natural gas ; Outgassing ; Photomultiplier tubes ; Residues ; Scanning electron microscopy ; Sensors ; Space sensors ; X-ray</subject><ispartof>Sensors and actuators. A. Physical., 2022-08, Vol.342, p.113656, Article 113656</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Aug 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1707-b11c0c0bb851ae6c258d514887797ed8e1ea14e08bcb4ef4217d3877d89ba0de3</citedby><cites>FETCH-LOGICAL-c1707-b11c0c0bb851ae6c258d514887797ed8e1ea14e08bcb4ef4217d3877d89ba0de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2022.113656$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Babij, Michał</creatorcontrib><creatorcontrib>Bielówka, Piotr</creatorcontrib><creatorcontrib>Dąbrowski, Arkadiusz</creatorcontrib><creatorcontrib>Nawrot, Witold</creatorcontrib><creatorcontrib>Czok, Mateusz</creatorcontrib><creatorcontrib>Malecha, Karol</creatorcontrib><title>Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors</title><title>Sensors and actuators. A. Physical.</title><description>Introduced by Fabio Sauli in 1997, the Gas Electron Multiplier (GEM) technology is commonly used in many high energy physics experiments. It has proven unique value in many scientific domains and adaptability to new research tasks. Typically, the GEM detectors are made with polyimide films (GEM foils and readout plate), halogen-free FR4 epoxy resins (supporting and stretching structures), conductive copper layers, etc. Because of outgassing and ageing, those components release in time residues of dust, moisture, and vapors. The residues pollute the gas mixture and consequently degrade the detector's working parameters. To avoid such a problem, devices can be constantly flushed by pure gas from an external source. This solution is not optimal for autonomous space detectors because of volume and weight limitations. The paper describes the successive work to develop an autonomous GEM detector without a gas mixture circulation system. As a solution, the use of Low-Temperature Cofired Ceramics (LTCC) materials was proposed and validated. The dedicated LTCC readout plates were manufactured and tested, and results are presented. [Display omitted] •Optimization of Gas Electron Multiplier particle detectors for space application.•Fabrication of dedicated readout boards made with Low-Temperature Cofired Ceramics.•Optimization of 2D orthogonal LTCC strips readout board for the equal charge distribution.•Performance of LTCC boards with respect to polyimide-based design.</description><subject>Autonomous vehicles</subject><subject>CubeSat</subject><subject>Detectors</subject><subject>Epoxy resins</subject><subject>Foils</subject><subject>Gas Electron Multiplier (GEM) detector</subject><subject>Gas mixtures</subject><subject>Low temperature</subject><subject>Low Temperature Cofired Ceramics (LTCC)</subject><subject>Micro Pattern Gas Detector (MPGD)</subject><subject>Moisture effects</subject><subject>Natural gas</subject><subject>Outgassing</subject><subject>Photomultiplier tubes</subject><subject>Residues</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>Space sensors</subject><subject>X-ray</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UEFOwzAQtBBIlMIDuFninOK1kzgVJ1SVgtSKSzlbjr1BidK42AkSL-Hat5SP4SqcOY20M7O7M4TcApsBg_y-mYVOzzjjfAYg8iw_IxMopEgEy-fnZMLmPE1SnspLchVCwxgTQsoJwY3uhkqbfvB1905dRTWV7Hj4-T4eTrjbcbreLhY09L7eU2zR9N5ZpB61dUNPK-fpSge6HJmOboa2r_dtjZ5a7OPQ-XBNLirdBrz5wyl5e1puF8_J-nX1snhcJwYkk0kJYJhhZVlkoDE3PCtsBmlRSDmXaAsE1JAiK0pTplilHKQVkbTFvNTMopiSu3Hv3ruPAUOvGjf4Lp5UXAqRgsgyGVUwqox3IXis1N7XO-2_FDB1alM1KrapTm2qsc3oeRg9GN__jOFUMDV2Bm3tY0ZlXf2P-xd_lX7a</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Babij, Michał</creator><creator>Bielówka, Piotr</creator><creator>Dąbrowski, Arkadiusz</creator><creator>Nawrot, Witold</creator><creator>Czok, Mateusz</creator><creator>Malecha, Karol</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20220801</creationdate><title>Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors</title><author>Babij, Michał ; Bielówka, Piotr ; Dąbrowski, Arkadiusz ; Nawrot, Witold ; Czok, Mateusz ; Malecha, Karol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1707-b11c0c0bb851ae6c258d514887797ed8e1ea14e08bcb4ef4217d3877d89ba0de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomous vehicles</topic><topic>CubeSat</topic><topic>Detectors</topic><topic>Epoxy resins</topic><topic>Foils</topic><topic>Gas Electron Multiplier (GEM) detector</topic><topic>Gas mixtures</topic><topic>Low temperature</topic><topic>Low Temperature Cofired Ceramics (LTCC)</topic><topic>Micro Pattern Gas Detector (MPGD)</topic><topic>Moisture effects</topic><topic>Natural gas</topic><topic>Outgassing</topic><topic>Photomultiplier tubes</topic><topic>Residues</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>Space sensors</topic><topic>X-ray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babij, Michał</creatorcontrib><creatorcontrib>Bielówka, Piotr</creatorcontrib><creatorcontrib>Dąbrowski, Arkadiusz</creatorcontrib><creatorcontrib>Nawrot, Witold</creatorcontrib><creatorcontrib>Czok, Mateusz</creatorcontrib><creatorcontrib>Malecha, Karol</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babij, Michał</au><au>Bielówka, Piotr</au><au>Dąbrowski, Arkadiusz</au><au>Nawrot, Witold</au><au>Czok, Mateusz</au><au>Malecha, Karol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>342</volume><spage>113656</spage><pages>113656-</pages><artnum>113656</artnum><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Introduced by Fabio Sauli in 1997, the Gas Electron Multiplier (GEM) technology is commonly used in many high energy physics experiments. It has proven unique value in many scientific domains and adaptability to new research tasks. Typically, the GEM detectors are made with polyimide films (GEM foils and readout plate), halogen-free FR4 epoxy resins (supporting and stretching structures), conductive copper layers, etc. Because of outgassing and ageing, those components release in time residues of dust, moisture, and vapors. The residues pollute the gas mixture and consequently degrade the detector's working parameters. To avoid such a problem, devices can be constantly flushed by pure gas from an external source. This solution is not optimal for autonomous space detectors because of volume and weight limitations. The paper describes the successive work to develop an autonomous GEM detector without a gas mixture circulation system. As a solution, the use of Low-Temperature Cofired Ceramics (LTCC) materials was proposed and validated. The dedicated LTCC readout plates were manufactured and tested, and results are presented. [Display omitted] •Optimization of Gas Electron Multiplier particle detectors for space application.•Fabrication of dedicated readout boards made with Low-Temperature Cofired Ceramics.•Optimization of 2D orthogonal LTCC strips readout board for the equal charge distribution.•Performance of LTCC boards with respect to polyimide-based design.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2022.113656</doi></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2022-08, Vol.342, p.113656, Article 113656
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_2733413557
source Elsevier ScienceDirect Journals
subjects Autonomous vehicles
CubeSat
Detectors
Epoxy resins
Foils
Gas Electron Multiplier (GEM) detector
Gas mixtures
Low temperature
Low Temperature Cofired Ceramics (LTCC)
Micro Pattern Gas Detector (MPGD)
Moisture effects
Natural gas
Outgassing
Photomultiplier tubes
Residues
Scanning electron microscopy
Sensors
Space sensors
X-ray
title Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturing%20of%20a%2070%C2%A0%C3%97%C2%A070%C2%A0mm2%20LTCC%20strip%20electrode%20readout%20for%20Gas%20Electron%20Multiplier%20detectors&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Babij,%20Micha%C5%82&rft.date=2022-08-01&rft.volume=342&rft.spage=113656&rft.pages=113656-&rft.artnum=113656&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2022.113656&rft_dat=%3Cproquest_cross%3E2733413557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733413557&rft_id=info:pmid/&rft_els_id=S0924424722002941&rfr_iscdi=true