Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors
Introduced by Fabio Sauli in 1997, the Gas Electron Multiplier (GEM) technology is commonly used in many high energy physics experiments. It has proven unique value in many scientific domains and adaptability to new research tasks. Typically, the GEM detectors are made with polyimide films (GEM foil...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2022-08, Vol.342, p.113656, Article 113656 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 113656 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 342 |
creator | Babij, Michał Bielówka, Piotr Dąbrowski, Arkadiusz Nawrot, Witold Czok, Mateusz Malecha, Karol |
description | Introduced by Fabio Sauli in 1997, the Gas Electron Multiplier (GEM) technology is commonly used in many high energy physics experiments. It has proven unique value in many scientific domains and adaptability to new research tasks. Typically, the GEM detectors are made with polyimide films (GEM foils and readout plate), halogen-free FR4 epoxy resins (supporting and stretching structures), conductive copper layers, etc. Because of outgassing and ageing, those components release in time residues of dust, moisture, and vapors. The residues pollute the gas mixture and consequently degrade the detector's working parameters. To avoid such a problem, devices can be constantly flushed by pure gas from an external source. This solution is not optimal for autonomous space detectors because of volume and weight limitations. The paper describes the successive work to develop an autonomous GEM detector without a gas mixture circulation system. As a solution, the use of Low-Temperature Cofired Ceramics (LTCC) materials was proposed and validated. The dedicated LTCC readout plates were manufactured and tested, and results are presented.
[Display omitted]
•Optimization of Gas Electron Multiplier particle detectors for space application.•Fabrication of dedicated readout boards made with Low-Temperature Cofired Ceramics.•Optimization of 2D orthogonal LTCC strips readout board for the equal charge distribution.•Performance of LTCC boards with respect to polyimide-based design. |
doi_str_mv | 10.1016/j.sna.2022.113656 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733413557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424722002941</els_id><sourcerecordid>2733413557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1707-b11c0c0bb851ae6c258d514887797ed8e1ea14e08bcb4ef4217d3877d89ba0de3</originalsourceid><addsrcrecordid>eNp9UEFOwzAQtBBIlMIDuFninOK1kzgVJ1SVgtSKSzlbjr1BidK42AkSL-Hat5SP4SqcOY20M7O7M4TcApsBg_y-mYVOzzjjfAYg8iw_IxMopEgEy-fnZMLmPE1SnspLchVCwxgTQsoJwY3uhkqbfvB1905dRTWV7Hj4-T4eTrjbcbreLhY09L7eU2zR9N5ZpB61dUNPK-fpSge6HJmOboa2r_dtjZ5a7OPQ-XBNLirdBrz5wyl5e1puF8_J-nX1snhcJwYkk0kJYJhhZVlkoDE3PCtsBmlRSDmXaAsE1JAiK0pTplilHKQVkbTFvNTMopiSu3Hv3ruPAUOvGjf4Lp5UXAqRgsgyGVUwqox3IXis1N7XO-2_FDB1alM1KrapTm2qsc3oeRg9GN__jOFUMDV2Bm3tY0ZlXf2P-xd_lX7a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733413557</pqid></control><display><type>article</type><title>Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors</title><source>Elsevier ScienceDirect Journals</source><creator>Babij, Michał ; Bielówka, Piotr ; Dąbrowski, Arkadiusz ; Nawrot, Witold ; Czok, Mateusz ; Malecha, Karol</creator><creatorcontrib>Babij, Michał ; Bielówka, Piotr ; Dąbrowski, Arkadiusz ; Nawrot, Witold ; Czok, Mateusz ; Malecha, Karol</creatorcontrib><description>Introduced by Fabio Sauli in 1997, the Gas Electron Multiplier (GEM) technology is commonly used in many high energy physics experiments. It has proven unique value in many scientific domains and adaptability to new research tasks. Typically, the GEM detectors are made with polyimide films (GEM foils and readout plate), halogen-free FR4 epoxy resins (supporting and stretching structures), conductive copper layers, etc. Because of outgassing and ageing, those components release in time residues of dust, moisture, and vapors. The residues pollute the gas mixture and consequently degrade the detector's working parameters. To avoid such a problem, devices can be constantly flushed by pure gas from an external source. This solution is not optimal for autonomous space detectors because of volume and weight limitations. The paper describes the successive work to develop an autonomous GEM detector without a gas mixture circulation system. As a solution, the use of Low-Temperature Cofired Ceramics (LTCC) materials was proposed and validated. The dedicated LTCC readout plates were manufactured and tested, and results are presented.
[Display omitted]
•Optimization of Gas Electron Multiplier particle detectors for space application.•Fabrication of dedicated readout boards made with Low-Temperature Cofired Ceramics.•Optimization of 2D orthogonal LTCC strips readout board for the equal charge distribution.•Performance of LTCC boards with respect to polyimide-based design.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2022.113656</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Autonomous vehicles ; CubeSat ; Detectors ; Epoxy resins ; Foils ; Gas Electron Multiplier (GEM) detector ; Gas mixtures ; Low temperature ; Low Temperature Cofired Ceramics (LTCC) ; Micro Pattern Gas Detector (MPGD) ; Moisture effects ; Natural gas ; Outgassing ; Photomultiplier tubes ; Residues ; Scanning electron microscopy ; Sensors ; Space sensors ; X-ray</subject><ispartof>Sensors and actuators. A. Physical., 2022-08, Vol.342, p.113656, Article 113656</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Aug 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1707-b11c0c0bb851ae6c258d514887797ed8e1ea14e08bcb4ef4217d3877d89ba0de3</citedby><cites>FETCH-LOGICAL-c1707-b11c0c0bb851ae6c258d514887797ed8e1ea14e08bcb4ef4217d3877d89ba0de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2022.113656$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Babij, Michał</creatorcontrib><creatorcontrib>Bielówka, Piotr</creatorcontrib><creatorcontrib>Dąbrowski, Arkadiusz</creatorcontrib><creatorcontrib>Nawrot, Witold</creatorcontrib><creatorcontrib>Czok, Mateusz</creatorcontrib><creatorcontrib>Malecha, Karol</creatorcontrib><title>Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors</title><title>Sensors and actuators. A. Physical.</title><description>Introduced by Fabio Sauli in 1997, the Gas Electron Multiplier (GEM) technology is commonly used in many high energy physics experiments. It has proven unique value in many scientific domains and adaptability to new research tasks. Typically, the GEM detectors are made with polyimide films (GEM foils and readout plate), halogen-free FR4 epoxy resins (supporting and stretching structures), conductive copper layers, etc. Because of outgassing and ageing, those components release in time residues of dust, moisture, and vapors. The residues pollute the gas mixture and consequently degrade the detector's working parameters. To avoid such a problem, devices can be constantly flushed by pure gas from an external source. This solution is not optimal for autonomous space detectors because of volume and weight limitations. The paper describes the successive work to develop an autonomous GEM detector without a gas mixture circulation system. As a solution, the use of Low-Temperature Cofired Ceramics (LTCC) materials was proposed and validated. The dedicated LTCC readout plates were manufactured and tested, and results are presented.
[Display omitted]
•Optimization of Gas Electron Multiplier particle detectors for space application.•Fabrication of dedicated readout boards made with Low-Temperature Cofired Ceramics.•Optimization of 2D orthogonal LTCC strips readout board for the equal charge distribution.•Performance of LTCC boards with respect to polyimide-based design.</description><subject>Autonomous vehicles</subject><subject>CubeSat</subject><subject>Detectors</subject><subject>Epoxy resins</subject><subject>Foils</subject><subject>Gas Electron Multiplier (GEM) detector</subject><subject>Gas mixtures</subject><subject>Low temperature</subject><subject>Low Temperature Cofired Ceramics (LTCC)</subject><subject>Micro Pattern Gas Detector (MPGD)</subject><subject>Moisture effects</subject><subject>Natural gas</subject><subject>Outgassing</subject><subject>Photomultiplier tubes</subject><subject>Residues</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>Space sensors</subject><subject>X-ray</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UEFOwzAQtBBIlMIDuFninOK1kzgVJ1SVgtSKSzlbjr1BidK42AkSL-Hat5SP4SqcOY20M7O7M4TcApsBg_y-mYVOzzjjfAYg8iw_IxMopEgEy-fnZMLmPE1SnspLchVCwxgTQsoJwY3uhkqbfvB1905dRTWV7Hj4-T4eTrjbcbreLhY09L7eU2zR9N5ZpB61dUNPK-fpSge6HJmOboa2r_dtjZ5a7OPQ-XBNLirdBrz5wyl5e1puF8_J-nX1snhcJwYkk0kJYJhhZVlkoDE3PCtsBmlRSDmXaAsE1JAiK0pTplilHKQVkbTFvNTMopiSu3Hv3ruPAUOvGjf4Lp5UXAqRgsgyGVUwqox3IXis1N7XO-2_FDB1alM1KrapTm2qsc3oeRg9GN__jOFUMDV2Bm3tY0ZlXf2P-xd_lX7a</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Babij, Michał</creator><creator>Bielówka, Piotr</creator><creator>Dąbrowski, Arkadiusz</creator><creator>Nawrot, Witold</creator><creator>Czok, Mateusz</creator><creator>Malecha, Karol</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20220801</creationdate><title>Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors</title><author>Babij, Michał ; Bielówka, Piotr ; Dąbrowski, Arkadiusz ; Nawrot, Witold ; Czok, Mateusz ; Malecha, Karol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1707-b11c0c0bb851ae6c258d514887797ed8e1ea14e08bcb4ef4217d3877d89ba0de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomous vehicles</topic><topic>CubeSat</topic><topic>Detectors</topic><topic>Epoxy resins</topic><topic>Foils</topic><topic>Gas Electron Multiplier (GEM) detector</topic><topic>Gas mixtures</topic><topic>Low temperature</topic><topic>Low Temperature Cofired Ceramics (LTCC)</topic><topic>Micro Pattern Gas Detector (MPGD)</topic><topic>Moisture effects</topic><topic>Natural gas</topic><topic>Outgassing</topic><topic>Photomultiplier tubes</topic><topic>Residues</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>Space sensors</topic><topic>X-ray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babij, Michał</creatorcontrib><creatorcontrib>Bielówka, Piotr</creatorcontrib><creatorcontrib>Dąbrowski, Arkadiusz</creatorcontrib><creatorcontrib>Nawrot, Witold</creatorcontrib><creatorcontrib>Czok, Mateusz</creatorcontrib><creatorcontrib>Malecha, Karol</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babij, Michał</au><au>Bielówka, Piotr</au><au>Dąbrowski, Arkadiusz</au><au>Nawrot, Witold</au><au>Czok, Mateusz</au><au>Malecha, Karol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>342</volume><spage>113656</spage><pages>113656-</pages><artnum>113656</artnum><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Introduced by Fabio Sauli in 1997, the Gas Electron Multiplier (GEM) technology is commonly used in many high energy physics experiments. It has proven unique value in many scientific domains and adaptability to new research tasks. Typically, the GEM detectors are made with polyimide films (GEM foils and readout plate), halogen-free FR4 epoxy resins (supporting and stretching structures), conductive copper layers, etc. Because of outgassing and ageing, those components release in time residues of dust, moisture, and vapors. The residues pollute the gas mixture and consequently degrade the detector's working parameters. To avoid such a problem, devices can be constantly flushed by pure gas from an external source. This solution is not optimal for autonomous space detectors because of volume and weight limitations. The paper describes the successive work to develop an autonomous GEM detector without a gas mixture circulation system. As a solution, the use of Low-Temperature Cofired Ceramics (LTCC) materials was proposed and validated. The dedicated LTCC readout plates were manufactured and tested, and results are presented.
[Display omitted]
•Optimization of Gas Electron Multiplier particle detectors for space application.•Fabrication of dedicated readout boards made with Low-Temperature Cofired Ceramics.•Optimization of 2D orthogonal LTCC strips readout board for the equal charge distribution.•Performance of LTCC boards with respect to polyimide-based design.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2022.113656</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2022-08, Vol.342, p.113656, Article 113656 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_journals_2733413557 |
source | Elsevier ScienceDirect Journals |
subjects | Autonomous vehicles CubeSat Detectors Epoxy resins Foils Gas Electron Multiplier (GEM) detector Gas mixtures Low temperature Low Temperature Cofired Ceramics (LTCC) Micro Pattern Gas Detector (MPGD) Moisture effects Natural gas Outgassing Photomultiplier tubes Residues Scanning electron microscopy Sensors Space sensors X-ray |
title | Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturing%20of%20a%2070%C2%A0%C3%97%C2%A070%C2%A0mm2%20LTCC%20strip%20electrode%20readout%20for%20Gas%20Electron%20Multiplier%20detectors&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Babij,%20Micha%C5%82&rft.date=2022-08-01&rft.volume=342&rft.spage=113656&rft.pages=113656-&rft.artnum=113656&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2022.113656&rft_dat=%3Cproquest_cross%3E2733413557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733413557&rft_id=info:pmid/&rft_els_id=S0924424722002941&rfr_iscdi=true |