A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming
Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints....
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2022-11, Vol.196 (1-2), p.115-171 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 1-2 |
container_start_page | 115 |
container_title | Mathematical programming |
container_volume | 196 |
creator | Castro, Margarita P. Cire, Andre A. Beck, J. Christopher |
description | Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a wide range of binary optimization problems and show its applicability for second-order conic inequalities. We identify conditions for which our lifted inequalities are facet-defining and derive a new BDD-based cut generation linear program. Such a model serves as a basis for a max-flow combinatorial algorithm over the BDD that can be applied to derive valid cuts more efficiently. Our numerical results show encouraging performance when incorporated into a state-of-the-art mathematical programming solver, significantly reducing the root node gap, increasing the number of problems solved, and reducing the run-time by a factor of three on average. |
doi_str_mv | 10.1007/s10107-021-01699-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2733397403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A725670645</galeid><sourcerecordid>A725670645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-79f77c7858ea5d950ce14308bf25c1ea97c5e7e268f73d7e980cdfd26c2b64743</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhoMoOK6-gKeA56yVpJN0H4dFXWFhL3oOmXRlzNKdjEkGmZvv4Bv6JGZtwdtSh4Li_6r--gl5y-GaA5j3lQMHw0BwBlxPE7s8Izs-SM0GPejnZAcgFFOaw0vyqtYHAOByHHfksKc-r4eYXMsluoX6c2MuzWyJodFTyR7nc0H6I7Zv1CXqTqcletdiTrRlCr9__uK0os8dyWXG0tel6B_JY3HrGtPxNXkR3FLxzb9-Rb5-_PDl5pbd3X_6fLO_Y16qsTEzBWO8GdWITs2TAo_9ARgPQSjP0U3GKzQo9BiMnA1OI_g5zEJ7cdCDGeQVebft7be_n7E2-5DPJfWTVhgp5WQGkF11vamObkEbU8itON9rxjV27xhin--NUNqAHlQHxAb4kmstGOypxNWVi-VgH8O3W_i2h2__hm8vHZIbVLs4HbH89_IE9QcSPIje</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733397403</pqid></control><display><type>article</type><title>A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Castro, Margarita P. ; Cire, Andre A. ; Beck, J. Christopher</creator><creatorcontrib>Castro, Margarita P. ; Cire, Andre A. ; Beck, J. Christopher</creatorcontrib><description>Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a wide range of binary optimization problems and show its applicability for second-order conic inequalities. We identify conditions for which our lifted inequalities are facet-defining and derive a new BDD-based cut generation linear program. Such a model serves as a basis for a max-flow combinatorial algorithm over the BDD that can be applied to derive valid cuts more efficiently. Our numerical results show encouraging performance when incorporated into a state-of-the-art mathematical programming solver, significantly reducing the root node gap, increasing the number of problems solved, and reducing the run-time by a factor of three on average.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-021-01699-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorial analysis ; Combinatorics ; Full Length Paper ; Inequalities ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Optimization ; Solvers ; Theoretical</subject><ispartof>Mathematical programming, 2022-11, Vol.196 (1-2), p.115-171</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-79f77c7858ea5d950ce14308bf25c1ea97c5e7e268f73d7e980cdfd26c2b64743</citedby><cites>FETCH-LOGICAL-c358t-79f77c7858ea5d950ce14308bf25c1ea97c5e7e268f73d7e980cdfd26c2b64743</cites><orcidid>0000-0002-4689-6143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-021-01699-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-021-01699-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Castro, Margarita P.</creatorcontrib><creatorcontrib>Cire, Andre A.</creatorcontrib><creatorcontrib>Beck, J. Christopher</creatorcontrib><title>A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a wide range of binary optimization problems and show its applicability for second-order conic inequalities. We identify conditions for which our lifted inequalities are facet-defining and derive a new BDD-based cut generation linear program. Such a model serves as a basis for a max-flow combinatorial algorithm over the BDD that can be applied to derive valid cuts more efficiently. Our numerical results show encouraging performance when incorporated into a state-of-the-art mathematical programming solver, significantly reducing the root node gap, increasing the number of problems solved, and reducing the run-time by a factor of three on average.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Solvers</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhoMoOK6-gKeA56yVpJN0H4dFXWFhL3oOmXRlzNKdjEkGmZvv4Bv6JGZtwdtSh4Li_6r--gl5y-GaA5j3lQMHw0BwBlxPE7s8Izs-SM0GPejnZAcgFFOaw0vyqtYHAOByHHfksKc-r4eYXMsluoX6c2MuzWyJodFTyR7nc0H6I7Zv1CXqTqcletdiTrRlCr9__uK0os8dyWXG0tel6B_JY3HrGtPxNXkR3FLxzb9-Rb5-_PDl5pbd3X_6fLO_Y16qsTEzBWO8GdWITs2TAo_9ARgPQSjP0U3GKzQo9BiMnA1OI_g5zEJ7cdCDGeQVebft7be_n7E2-5DPJfWTVhgp5WQGkF11vamObkEbU8itON9rxjV27xhin--NUNqAHlQHxAb4kmstGOypxNWVi-VgH8O3W_i2h2__hm8vHZIbVLs4HbH89_IE9QcSPIje</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Castro, Margarita P.</creator><creator>Cire, Andre A.</creator><creator>Beck, J. Christopher</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4689-6143</orcidid></search><sort><creationdate>20221101</creationdate><title>A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming</title><author>Castro, Margarita P. ; Cire, Andre A. ; Beck, J. Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-79f77c7858ea5d950ce14308bf25c1ea97c5e7e268f73d7e980cdfd26c2b64743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Solvers</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Margarita P.</creatorcontrib><creatorcontrib>Cire, Andre A.</creatorcontrib><creatorcontrib>Beck, J. Christopher</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Margarita P.</au><au>Cire, Andre A.</au><au>Beck, J. Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>196</volume><issue>1-2</issue><spage>115</spage><epage>171</epage><pages>115-171</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a wide range of binary optimization problems and show its applicability for second-order conic inequalities. We identify conditions for which our lifted inequalities are facet-defining and derive a new BDD-based cut generation linear program. Such a model serves as a basis for a max-flow combinatorial algorithm over the BDD that can be applied to derive valid cuts more efficiently. Our numerical results show encouraging performance when incorporated into a state-of-the-art mathematical programming solver, significantly reducing the root node gap, increasing the number of problems solved, and reducing the run-time by a factor of three on average.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-021-01699-y</doi><tpages>57</tpages><orcidid>https://orcid.org/0000-0002-4689-6143</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2022-11, Vol.196 (1-2), p.115-171 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_journals_2733397403 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Calculus of Variations and Optimal Control Optimization Combinatorial analysis Combinatorics Full Length Paper Inequalities Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Solvers Theoretical |
title | A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combinatorial%20cut-and-lift%20procedure%20with%20an%20application%20to%200%E2%80%931%20second-order%20conic%20programming&rft.jtitle=Mathematical%20programming&rft.au=Castro,%20Margarita%20P.&rft.date=2022-11-01&rft.volume=196&rft.issue=1-2&rft.spage=115&rft.epage=171&rft.pages=115-171&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-021-01699-y&rft_dat=%3Cgale_proqu%3EA725670645%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733397403&rft_id=info:pmid/&rft_galeid=A725670645&rfr_iscdi=true |