A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming

Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2022-11, Vol.196 (1-2), p.115-171
Hauptverfasser: Castro, Margarita P., Cire, Andre A., Beck, J. Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 1-2
container_start_page 115
container_title Mathematical programming
container_volume 196
creator Castro, Margarita P.
Cire, Andre A.
Beck, J. Christopher
description Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a wide range of binary optimization problems and show its applicability for second-order conic inequalities. We identify conditions for which our lifted inequalities are facet-defining and derive a new BDD-based cut generation linear program. Such a model serves as a basis for a max-flow combinatorial algorithm over the BDD that can be applied to derive valid cuts more efficiently. Our numerical results show encouraging performance when incorporated into a state-of-the-art mathematical programming solver, significantly reducing the root node gap, increasing the number of problems solved, and reducing the run-time by a factor of three on average.
doi_str_mv 10.1007/s10107-021-01699-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2733397403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A725670645</galeid><sourcerecordid>A725670645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-79f77c7858ea5d950ce14308bf25c1ea97c5e7e268f73d7e980cdfd26c2b64743</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhoMoOK6-gKeA56yVpJN0H4dFXWFhL3oOmXRlzNKdjEkGmZvv4Bv6JGZtwdtSh4Li_6r--gl5y-GaA5j3lQMHw0BwBlxPE7s8Izs-SM0GPejnZAcgFFOaw0vyqtYHAOByHHfksKc-r4eYXMsluoX6c2MuzWyJodFTyR7nc0H6I7Zv1CXqTqcletdiTrRlCr9__uK0os8dyWXG0tel6B_JY3HrGtPxNXkR3FLxzb9-Rb5-_PDl5pbd3X_6fLO_Y16qsTEzBWO8GdWITs2TAo_9ARgPQSjP0U3GKzQo9BiMnA1OI_g5zEJ7cdCDGeQVebft7be_n7E2-5DPJfWTVhgp5WQGkF11vamObkEbU8itON9rxjV27xhin--NUNqAHlQHxAb4kmstGOypxNWVi-VgH8O3W_i2h2__hm8vHZIbVLs4HbH89_IE9QcSPIje</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733397403</pqid></control><display><type>article</type><title>A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Castro, Margarita P. ; Cire, Andre A. ; Beck, J. Christopher</creator><creatorcontrib>Castro, Margarita P. ; Cire, Andre A. ; Beck, J. Christopher</creatorcontrib><description>Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a wide range of binary optimization problems and show its applicability for second-order conic inequalities. We identify conditions for which our lifted inequalities are facet-defining and derive a new BDD-based cut generation linear program. Such a model serves as a basis for a max-flow combinatorial algorithm over the BDD that can be applied to derive valid cuts more efficiently. Our numerical results show encouraging performance when incorporated into a state-of-the-art mathematical programming solver, significantly reducing the root node gap, increasing the number of problems solved, and reducing the run-time by a factor of three on average.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-021-01699-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorial analysis ; Combinatorics ; Full Length Paper ; Inequalities ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Optimization ; Solvers ; Theoretical</subject><ispartof>Mathematical programming, 2022-11, Vol.196 (1-2), p.115-171</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-79f77c7858ea5d950ce14308bf25c1ea97c5e7e268f73d7e980cdfd26c2b64743</citedby><cites>FETCH-LOGICAL-c358t-79f77c7858ea5d950ce14308bf25c1ea97c5e7e268f73d7e980cdfd26c2b64743</cites><orcidid>0000-0002-4689-6143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-021-01699-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-021-01699-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Castro, Margarita P.</creatorcontrib><creatorcontrib>Cire, Andre A.</creatorcontrib><creatorcontrib>Beck, J. Christopher</creatorcontrib><title>A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a wide range of binary optimization problems and show its applicability for second-order conic inequalities. We identify conditions for which our lifted inequalities are facet-defining and derive a new BDD-based cut generation linear program. Such a model serves as a basis for a max-flow combinatorial algorithm over the BDD that can be applied to derive valid cuts more efficiently. Our numerical results show encouraging performance when incorporated into a state-of-the-art mathematical programming solver, significantly reducing the root node gap, increasing the number of problems solved, and reducing the run-time by a factor of three on average.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Solvers</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhoMoOK6-gKeA56yVpJN0H4dFXWFhL3oOmXRlzNKdjEkGmZvv4Bv6JGZtwdtSh4Li_6r--gl5y-GaA5j3lQMHw0BwBlxPE7s8Izs-SM0GPejnZAcgFFOaw0vyqtYHAOByHHfksKc-r4eYXMsluoX6c2MuzWyJodFTyR7nc0H6I7Zv1CXqTqcletdiTrRlCr9__uK0os8dyWXG0tel6B_JY3HrGtPxNXkR3FLxzb9-Rb5-_PDl5pbd3X_6fLO_Y16qsTEzBWO8GdWITs2TAo_9ARgPQSjP0U3GKzQo9BiMnA1OI_g5zEJ7cdCDGeQVebft7be_n7E2-5DPJfWTVhgp5WQGkF11vamObkEbU8itON9rxjV27xhin--NUNqAHlQHxAb4kmstGOypxNWVi-VgH8O3W_i2h2__hm8vHZIbVLs4HbH89_IE9QcSPIje</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Castro, Margarita P.</creator><creator>Cire, Andre A.</creator><creator>Beck, J. Christopher</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4689-6143</orcidid></search><sort><creationdate>20221101</creationdate><title>A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming</title><author>Castro, Margarita P. ; Cire, Andre A. ; Beck, J. Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-79f77c7858ea5d950ce14308bf25c1ea97c5e7e268f73d7e980cdfd26c2b64743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Solvers</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Margarita P.</creatorcontrib><creatorcontrib>Cire, Andre A.</creatorcontrib><creatorcontrib>Beck, J. Christopher</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Margarita P.</au><au>Cire, Andre A.</au><au>Beck, J. Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>196</volume><issue>1-2</issue><spage>115</spage><epage>171</epage><pages>115-171</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a wide range of binary optimization problems and show its applicability for second-order conic inequalities. We identify conditions for which our lifted inequalities are facet-defining and derive a new BDD-based cut generation linear program. Such a model serves as a basis for a max-flow combinatorial algorithm over the BDD that can be applied to derive valid cuts more efficiently. Our numerical results show encouraging performance when incorporated into a state-of-the-art mathematical programming solver, significantly reducing the root node gap, increasing the number of problems solved, and reducing the run-time by a factor of three on average.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-021-01699-y</doi><tpages>57</tpages><orcidid>https://orcid.org/0000-0002-4689-6143</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2022-11, Vol.196 (1-2), p.115-171
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_2733397403
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Algorithms
Calculus of Variations and Optimal Control
Optimization
Combinatorial analysis
Combinatorics
Full Length Paper
Inequalities
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Solvers
Theoretical
title A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combinatorial%20cut-and-lift%20procedure%20with%20an%20application%20to%200%E2%80%931%20second-order%20conic%20programming&rft.jtitle=Mathematical%20programming&rft.au=Castro,%20Margarita%20P.&rft.date=2022-11-01&rft.volume=196&rft.issue=1-2&rft.spage=115&rft.epage=171&rft.pages=115-171&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-021-01699-y&rft_dat=%3Cgale_proqu%3EA725670645%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733397403&rft_id=info:pmid/&rft_galeid=A725670645&rfr_iscdi=true