Electric field manipulation of magnetic skyrmions

Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits. To build skyrmionic devices, researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semicon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2022-12, Vol.41 (12), p.4000-4014
Hauptverfasser: Wang, Ya-Dong, Wei, Zhi-Jian, Tu, Hao-Ran, Zhang, Chen-Hui, Hou, Zhi-Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4014
container_issue 12
container_start_page 4000
container_title Rare metals
container_volume 41
creator Wang, Ya-Dong
Wei, Zhi-Jian
Tu, Hao-Ran
Zhang, Chen-Hui
Hou, Zhi-Peng
description Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits. To build skyrmionic devices, researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semiconductor technology. This operation generally uses a spin-polarized current, which unavoidably causes high energy dissipation and Joule heating. Thus, the electric-field strategy is a hopeful alternative for electrically manipulating the skyrmions due to the strategy’s negligible Joule heating and low energy cost. In this review, we systematically summarize the theoretical and experimental development of the electrical-field manipulation of magnetic skyrmions over the past decade. We review the following magnetic systems and physical mechanisms: (i) ultra-thin multilayer films with accumulation and release of interfacial charge, (ii) single-phase multiferroic material with magneto-electric coupling, (iii) ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructure with magneto-elastic coupling. Finally, we consider future developmental trends in the electric-field manipulation of magnetic skyrmions and other topological magnetic domain structures. Graphical abstract
doi_str_mv 10.1007/s12598-022-02084-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733396654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733396654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-44d2d1cee45eb865dcfedfd33777f0e266ed37166c450747d8fb4e6d8a434e7d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPBc3TynT1KqVYoeNFz2CaTsnW7uybbQ_-90RW8eRjm631n4CHklsE9AzAPmXFVWQqclwArKZyRGbPaUMOsOi81AKOgOLskVznvAaTUGmaErVr0Y2r8IjbYhsWh7prh2NZj03eLPpZ-1-FY1vnjlA5lmK_JRazbjDe_eU7en1ZvyzXdvD6_LB831AtWjVTKwAPziFLh1moVfMQQgxDGmAjItcYgDNPaSwVGmmDjVqIOtpZCogliTu6mu0PqP4-YR7fvj6krLx03QohKayWLik8qn_qcE0Y3pOZQp5Nj4L7RuAmNK2jcDxoHxSQmUy7ibofp7_Q_ri84UmZe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733396654</pqid></control><display><type>article</type><title>Electric field manipulation of magnetic skyrmions</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Ya-Dong ; Wei, Zhi-Jian ; Tu, Hao-Ran ; Zhang, Chen-Hui ; Hou, Zhi-Peng</creator><creatorcontrib>Wang, Ya-Dong ; Wei, Zhi-Jian ; Tu, Hao-Ran ; Zhang, Chen-Hui ; Hou, Zhi-Peng</creatorcontrib><description>Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits. To build skyrmionic devices, researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semiconductor technology. This operation generally uses a spin-polarized current, which unavoidably causes high energy dissipation and Joule heating. Thus, the electric-field strategy is a hopeful alternative for electrically manipulating the skyrmions due to the strategy’s negligible Joule heating and low energy cost. In this review, we systematically summarize the theoretical and experimental development of the electrical-field manipulation of magnetic skyrmions over the past decade. We review the following magnetic systems and physical mechanisms: (i) ultra-thin multilayer films with accumulation and release of interfacial charge, (ii) single-phase multiferroic material with magneto-electric coupling, (iii) ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructure with magneto-elastic coupling. Finally, we consider future developmental trends in the electric-field manipulation of magnetic skyrmions and other topological magnetic domain structures. Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-022-02084-0</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Charge materials ; Chemistry and Materials Science ; Coupling ; Electric fields ; Energy ; Energy costs ; Energy dissipation ; Ferroelectricity ; Ferromagnetic materials ; Heterostructures ; Hypothetical particles ; Logic circuits ; Magnetic domains ; Materials Engineering ; Materials Science ; Metallic Materials ; Mini Review ; Multiferroic materials ; Multilayers ; Nanoscale Science and Technology ; Ohmic dissipation ; Particle theory ; Physical Chemistry ; Resistance heating ; Swirling ; Thin films</subject><ispartof>Rare metals, 2022-12, Vol.41 (12), p.4000-4014</ispartof><rights>Youke Publishing Co.,Ltd 2022</rights><rights>Youke Publishing Co.,Ltd 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-44d2d1cee45eb865dcfedfd33777f0e266ed37166c450747d8fb4e6d8a434e7d3</citedby><cites>FETCH-LOGICAL-c319t-44d2d1cee45eb865dcfedfd33777f0e266ed37166c450747d8fb4e6d8a434e7d3</cites><orcidid>0000-0003-4935-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-022-02084-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-022-02084-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Ya-Dong</creatorcontrib><creatorcontrib>Wei, Zhi-Jian</creatorcontrib><creatorcontrib>Tu, Hao-Ran</creatorcontrib><creatorcontrib>Zhang, Chen-Hui</creatorcontrib><creatorcontrib>Hou, Zhi-Peng</creatorcontrib><title>Electric field manipulation of magnetic skyrmions</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits. To build skyrmionic devices, researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semiconductor technology. This operation generally uses a spin-polarized current, which unavoidably causes high energy dissipation and Joule heating. Thus, the electric-field strategy is a hopeful alternative for electrically manipulating the skyrmions due to the strategy’s negligible Joule heating and low energy cost. In this review, we systematically summarize the theoretical and experimental development of the electrical-field manipulation of magnetic skyrmions over the past decade. We review the following magnetic systems and physical mechanisms: (i) ultra-thin multilayer films with accumulation and release of interfacial charge, (ii) single-phase multiferroic material with magneto-electric coupling, (iii) ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructure with magneto-elastic coupling. Finally, we consider future developmental trends in the electric-field manipulation of magnetic skyrmions and other topological magnetic domain structures. Graphical abstract</description><subject>Biomaterials</subject><subject>Charge materials</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Electric fields</subject><subject>Energy</subject><subject>Energy costs</subject><subject>Energy dissipation</subject><subject>Ferroelectricity</subject><subject>Ferromagnetic materials</subject><subject>Heterostructures</subject><subject>Hypothetical particles</subject><subject>Logic circuits</subject><subject>Magnetic domains</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Mini Review</subject><subject>Multiferroic materials</subject><subject>Multilayers</subject><subject>Nanoscale Science and Technology</subject><subject>Ohmic dissipation</subject><subject>Particle theory</subject><subject>Physical Chemistry</subject><subject>Resistance heating</subject><subject>Swirling</subject><subject>Thin films</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPBc3TynT1KqVYoeNFz2CaTsnW7uybbQ_-90RW8eRjm631n4CHklsE9AzAPmXFVWQqclwArKZyRGbPaUMOsOi81AKOgOLskVznvAaTUGmaErVr0Y2r8IjbYhsWh7prh2NZj03eLPpZ-1-FY1vnjlA5lmK_JRazbjDe_eU7en1ZvyzXdvD6_LB831AtWjVTKwAPziFLh1moVfMQQgxDGmAjItcYgDNPaSwVGmmDjVqIOtpZCogliTu6mu0PqP4-YR7fvj6krLx03QohKayWLik8qn_qcE0Y3pOZQp5Nj4L7RuAmNK2jcDxoHxSQmUy7ibofp7_Q_ri84UmZe</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wang, Ya-Dong</creator><creator>Wei, Zhi-Jian</creator><creator>Tu, Hao-Ran</creator><creator>Zhang, Chen-Hui</creator><creator>Hou, Zhi-Peng</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4935-2149</orcidid></search><sort><creationdate>20221201</creationdate><title>Electric field manipulation of magnetic skyrmions</title><author>Wang, Ya-Dong ; Wei, Zhi-Jian ; Tu, Hao-Ran ; Zhang, Chen-Hui ; Hou, Zhi-Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-44d2d1cee45eb865dcfedfd33777f0e266ed37166c450747d8fb4e6d8a434e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomaterials</topic><topic>Charge materials</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Electric fields</topic><topic>Energy</topic><topic>Energy costs</topic><topic>Energy dissipation</topic><topic>Ferroelectricity</topic><topic>Ferromagnetic materials</topic><topic>Heterostructures</topic><topic>Hypothetical particles</topic><topic>Logic circuits</topic><topic>Magnetic domains</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Mini Review</topic><topic>Multiferroic materials</topic><topic>Multilayers</topic><topic>Nanoscale Science and Technology</topic><topic>Ohmic dissipation</topic><topic>Particle theory</topic><topic>Physical Chemistry</topic><topic>Resistance heating</topic><topic>Swirling</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ya-Dong</creatorcontrib><creatorcontrib>Wei, Zhi-Jian</creatorcontrib><creatorcontrib>Tu, Hao-Ran</creatorcontrib><creatorcontrib>Zhang, Chen-Hui</creatorcontrib><creatorcontrib>Hou, Zhi-Peng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ya-Dong</au><au>Wei, Zhi-Jian</au><au>Tu, Hao-Ran</au><au>Zhang, Chen-Hui</au><au>Hou, Zhi-Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field manipulation of magnetic skyrmions</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>41</volume><issue>12</issue><spage>4000</spage><epage>4014</epage><pages>4000-4014</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits. To build skyrmionic devices, researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semiconductor technology. This operation generally uses a spin-polarized current, which unavoidably causes high energy dissipation and Joule heating. Thus, the electric-field strategy is a hopeful alternative for electrically manipulating the skyrmions due to the strategy’s negligible Joule heating and low energy cost. In this review, we systematically summarize the theoretical and experimental development of the electrical-field manipulation of magnetic skyrmions over the past decade. We review the following magnetic systems and physical mechanisms: (i) ultra-thin multilayer films with accumulation and release of interfacial charge, (ii) single-phase multiferroic material with magneto-electric coupling, (iii) ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructure with magneto-elastic coupling. Finally, we consider future developmental trends in the electric-field manipulation of magnetic skyrmions and other topological magnetic domain structures. Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-022-02084-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4935-2149</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2022-12, Vol.41 (12), p.4000-4014
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2733396654
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Biomaterials
Charge materials
Chemistry and Materials Science
Coupling
Electric fields
Energy
Energy costs
Energy dissipation
Ferroelectricity
Ferromagnetic materials
Heterostructures
Hypothetical particles
Logic circuits
Magnetic domains
Materials Engineering
Materials Science
Metallic Materials
Mini Review
Multiferroic materials
Multilayers
Nanoscale Science and Technology
Ohmic dissipation
Particle theory
Physical Chemistry
Resistance heating
Swirling
Thin films
title Electric field manipulation of magnetic skyrmions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field%20manipulation%20of%20magnetic%20skyrmions&rft.jtitle=Rare%20metals&rft.au=Wang,%20Ya-Dong&rft.date=2022-12-01&rft.volume=41&rft.issue=12&rft.spage=4000&rft.epage=4014&rft.pages=4000-4014&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-022-02084-0&rft_dat=%3Cproquest_cross%3E2733396654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733396654&rft_id=info:pmid/&rfr_iscdi=true