Electric field manipulation of magnetic skyrmions
Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits. To build skyrmionic devices, researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semicon...
Gespeichert in:
Veröffentlicht in: | Rare metals 2022-12, Vol.41 (12), p.4000-4014 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4014 |
---|---|
container_issue | 12 |
container_start_page | 4000 |
container_title | Rare metals |
container_volume | 41 |
creator | Wang, Ya-Dong Wei, Zhi-Jian Tu, Hao-Ran Zhang, Chen-Hui Hou, Zhi-Peng |
description | Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits. To build skyrmionic devices, researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semiconductor technology. This operation generally uses a spin-polarized current, which unavoidably causes high energy dissipation and Joule heating. Thus, the electric-field strategy is a hopeful alternative for electrically manipulating the skyrmions due to the strategy’s negligible Joule heating and low energy cost. In this review, we systematically summarize the theoretical and experimental development of the electrical-field manipulation of magnetic skyrmions over the past decade. We review the following magnetic systems and physical mechanisms: (i) ultra-thin multilayer films with accumulation and release of interfacial charge, (ii) single-phase multiferroic material with magneto-electric coupling, (iii) ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructure with magneto-elastic coupling. Finally, we consider future developmental trends in the electric-field manipulation of magnetic skyrmions and other topological magnetic domain structures.
Graphical abstract |
doi_str_mv | 10.1007/s12598-022-02084-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733396654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733396654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-44d2d1cee45eb865dcfedfd33777f0e266ed37166c450747d8fb4e6d8a434e7d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPBc3TynT1KqVYoeNFz2CaTsnW7uybbQ_-90RW8eRjm631n4CHklsE9AzAPmXFVWQqclwArKZyRGbPaUMOsOi81AKOgOLskVznvAaTUGmaErVr0Y2r8IjbYhsWh7prh2NZj03eLPpZ-1-FY1vnjlA5lmK_JRazbjDe_eU7en1ZvyzXdvD6_LB831AtWjVTKwAPziFLh1moVfMQQgxDGmAjItcYgDNPaSwVGmmDjVqIOtpZCogliTu6mu0PqP4-YR7fvj6krLx03QohKayWLik8qn_qcE0Y3pOZQp5Nj4L7RuAmNK2jcDxoHxSQmUy7ibofp7_Q_ri84UmZe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733396654</pqid></control><display><type>article</type><title>Electric field manipulation of magnetic skyrmions</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Ya-Dong ; Wei, Zhi-Jian ; Tu, Hao-Ran ; Zhang, Chen-Hui ; Hou, Zhi-Peng</creator><creatorcontrib>Wang, Ya-Dong ; Wei, Zhi-Jian ; Tu, Hao-Ran ; Zhang, Chen-Hui ; Hou, Zhi-Peng</creatorcontrib><description>Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits. To build skyrmionic devices, researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semiconductor technology. This operation generally uses a spin-polarized current, which unavoidably causes high energy dissipation and Joule heating. Thus, the electric-field strategy is a hopeful alternative for electrically manipulating the skyrmions due to the strategy’s negligible Joule heating and low energy cost. In this review, we systematically summarize the theoretical and experimental development of the electrical-field manipulation of magnetic skyrmions over the past decade. We review the following magnetic systems and physical mechanisms: (i) ultra-thin multilayer films with accumulation and release of interfacial charge, (ii) single-phase multiferroic material with magneto-electric coupling, (iii) ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructure with magneto-elastic coupling. Finally, we consider future developmental trends in the electric-field manipulation of magnetic skyrmions and other topological magnetic domain structures.
Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-022-02084-0</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Charge materials ; Chemistry and Materials Science ; Coupling ; Electric fields ; Energy ; Energy costs ; Energy dissipation ; Ferroelectricity ; Ferromagnetic materials ; Heterostructures ; Hypothetical particles ; Logic circuits ; Magnetic domains ; Materials Engineering ; Materials Science ; Metallic Materials ; Mini Review ; Multiferroic materials ; Multilayers ; Nanoscale Science and Technology ; Ohmic dissipation ; Particle theory ; Physical Chemistry ; Resistance heating ; Swirling ; Thin films</subject><ispartof>Rare metals, 2022-12, Vol.41 (12), p.4000-4014</ispartof><rights>Youke Publishing Co.,Ltd 2022</rights><rights>Youke Publishing Co.,Ltd 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-44d2d1cee45eb865dcfedfd33777f0e266ed37166c450747d8fb4e6d8a434e7d3</citedby><cites>FETCH-LOGICAL-c319t-44d2d1cee45eb865dcfedfd33777f0e266ed37166c450747d8fb4e6d8a434e7d3</cites><orcidid>0000-0003-4935-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-022-02084-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-022-02084-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Ya-Dong</creatorcontrib><creatorcontrib>Wei, Zhi-Jian</creatorcontrib><creatorcontrib>Tu, Hao-Ran</creatorcontrib><creatorcontrib>Zhang, Chen-Hui</creatorcontrib><creatorcontrib>Hou, Zhi-Peng</creatorcontrib><title>Electric field manipulation of magnetic skyrmions</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits. To build skyrmionic devices, researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semiconductor technology. This operation generally uses a spin-polarized current, which unavoidably causes high energy dissipation and Joule heating. Thus, the electric-field strategy is a hopeful alternative for electrically manipulating the skyrmions due to the strategy’s negligible Joule heating and low energy cost. In this review, we systematically summarize the theoretical and experimental development of the electrical-field manipulation of magnetic skyrmions over the past decade. We review the following magnetic systems and physical mechanisms: (i) ultra-thin multilayer films with accumulation and release of interfacial charge, (ii) single-phase multiferroic material with magneto-electric coupling, (iii) ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructure with magneto-elastic coupling. Finally, we consider future developmental trends in the electric-field manipulation of magnetic skyrmions and other topological magnetic domain structures.
Graphical abstract</description><subject>Biomaterials</subject><subject>Charge materials</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Electric fields</subject><subject>Energy</subject><subject>Energy costs</subject><subject>Energy dissipation</subject><subject>Ferroelectricity</subject><subject>Ferromagnetic materials</subject><subject>Heterostructures</subject><subject>Hypothetical particles</subject><subject>Logic circuits</subject><subject>Magnetic domains</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Mini Review</subject><subject>Multiferroic materials</subject><subject>Multilayers</subject><subject>Nanoscale Science and Technology</subject><subject>Ohmic dissipation</subject><subject>Particle theory</subject><subject>Physical Chemistry</subject><subject>Resistance heating</subject><subject>Swirling</subject><subject>Thin films</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPBc3TynT1KqVYoeNFz2CaTsnW7uybbQ_-90RW8eRjm631n4CHklsE9AzAPmXFVWQqclwArKZyRGbPaUMOsOi81AKOgOLskVznvAaTUGmaErVr0Y2r8IjbYhsWh7prh2NZj03eLPpZ-1-FY1vnjlA5lmK_JRazbjDe_eU7en1ZvyzXdvD6_LB831AtWjVTKwAPziFLh1moVfMQQgxDGmAjItcYgDNPaSwVGmmDjVqIOtpZCogliTu6mu0PqP4-YR7fvj6krLx03QohKayWLik8qn_qcE0Y3pOZQp5Nj4L7RuAmNK2jcDxoHxSQmUy7ibofp7_Q_ri84UmZe</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wang, Ya-Dong</creator><creator>Wei, Zhi-Jian</creator><creator>Tu, Hao-Ran</creator><creator>Zhang, Chen-Hui</creator><creator>Hou, Zhi-Peng</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4935-2149</orcidid></search><sort><creationdate>20221201</creationdate><title>Electric field manipulation of magnetic skyrmions</title><author>Wang, Ya-Dong ; Wei, Zhi-Jian ; Tu, Hao-Ran ; Zhang, Chen-Hui ; Hou, Zhi-Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-44d2d1cee45eb865dcfedfd33777f0e266ed37166c450747d8fb4e6d8a434e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomaterials</topic><topic>Charge materials</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Electric fields</topic><topic>Energy</topic><topic>Energy costs</topic><topic>Energy dissipation</topic><topic>Ferroelectricity</topic><topic>Ferromagnetic materials</topic><topic>Heterostructures</topic><topic>Hypothetical particles</topic><topic>Logic circuits</topic><topic>Magnetic domains</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Mini Review</topic><topic>Multiferroic materials</topic><topic>Multilayers</topic><topic>Nanoscale Science and Technology</topic><topic>Ohmic dissipation</topic><topic>Particle theory</topic><topic>Physical Chemistry</topic><topic>Resistance heating</topic><topic>Swirling</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ya-Dong</creatorcontrib><creatorcontrib>Wei, Zhi-Jian</creatorcontrib><creatorcontrib>Tu, Hao-Ran</creatorcontrib><creatorcontrib>Zhang, Chen-Hui</creatorcontrib><creatorcontrib>Hou, Zhi-Peng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ya-Dong</au><au>Wei, Zhi-Jian</au><au>Tu, Hao-Ran</au><au>Zhang, Chen-Hui</au><au>Hou, Zhi-Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field manipulation of magnetic skyrmions</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>41</volume><issue>12</issue><spage>4000</spage><epage>4014</epage><pages>4000-4014</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits. To build skyrmionic devices, researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semiconductor technology. This operation generally uses a spin-polarized current, which unavoidably causes high energy dissipation and Joule heating. Thus, the electric-field strategy is a hopeful alternative for electrically manipulating the skyrmions due to the strategy’s negligible Joule heating and low energy cost. In this review, we systematically summarize the theoretical and experimental development of the electrical-field manipulation of magnetic skyrmions over the past decade. We review the following magnetic systems and physical mechanisms: (i) ultra-thin multilayer films with accumulation and release of interfacial charge, (ii) single-phase multiferroic material with magneto-electric coupling, (iii) ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructure with magneto-elastic coupling. Finally, we consider future developmental trends in the electric-field manipulation of magnetic skyrmions and other topological magnetic domain structures.
Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-022-02084-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4935-2149</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2022-12, Vol.41 (12), p.4000-4014 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2733396654 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Biomaterials Charge materials Chemistry and Materials Science Coupling Electric fields Energy Energy costs Energy dissipation Ferroelectricity Ferromagnetic materials Heterostructures Hypothetical particles Logic circuits Magnetic domains Materials Engineering Materials Science Metallic Materials Mini Review Multiferroic materials Multilayers Nanoscale Science and Technology Ohmic dissipation Particle theory Physical Chemistry Resistance heating Swirling Thin films |
title | Electric field manipulation of magnetic skyrmions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field%20manipulation%20of%20magnetic%20skyrmions&rft.jtitle=Rare%20metals&rft.au=Wang,%20Ya-Dong&rft.date=2022-12-01&rft.volume=41&rft.issue=12&rft.spage=4000&rft.epage=4014&rft.pages=4000-4014&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-022-02084-0&rft_dat=%3Cproquest_cross%3E2733396654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733396654&rft_id=info:pmid/&rfr_iscdi=true |