Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces
In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily sma...
Gespeichert in:
Veröffentlicht in: | Journal of dynamics and differential equations 2022-12, Vol.34 (4), p.2841-2865 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2865 |
---|---|
container_issue | 4 |
container_start_page | 2841 |
container_title | Journal of dynamics and differential equations |
container_volume | 34 |
creator | Rodrigues, H. M. Caraballo, T. Nakassima, G. K. |
description | In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results. |
doi_str_mv | 10.1007/s10884-020-09854-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733387638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733387638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-42a00fbba54a427b7632bbe174323dc8d92c0a1268c868f2cb21ef4676b3c9e33</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhpfQQtw0fyAnQc_baEfySnt0XTcJGFrycRZaeZQorCVbs4bmZ-QfV-4aeutphuF5H4a3qq4a_rXhXF1Tw7WWNQde807PZS3OqlkzV1B3APCh7FzyWkEnz6tPRK-cF0x0s-r9PvUHGiMSseTZ6vcuRYxjsAP7HtxLGtP2jYXILFsOdmJuMGK2QyDcsMWwTTSyX5hD2gTH1iGizSXqPeaTZ7U_2DGkSEfPXfQhhhELssVI5VyIbzZa98IedtYhfa4-ejsQXp7mRfX0Y_W4vK3XP2_ulot17UDxsZZgOfd9b-fSSlC9agX0PTZKChAbpzcdOG4baLXTrfbgemjQy1a1vXAdCnFRfZm8u5z2B6TRvKZDLu-QASWE0MWoCwUT5XIiyujNLoetzW-m4eZYvZmqN6V687d6c1SLKUQFjs-Y_6n_k_oDCp2Ivw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733387638</pqid></control><display><type>article</type><title>Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Rodrigues, H. M. ; Caraballo, T. ; Nakassima, G. K.</creator><creatorcontrib>Rodrigues, H. M. ; Caraballo, T. ; Nakassima, G. K.</creatorcontrib><description>In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-020-09854-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Banach spaces ; Dichotomies ; Differential equations ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Periodic functions ; Perturbation ; Robustness (mathematics) ; Stability</subject><ispartof>Journal of dynamics and differential equations, 2022-12, Vol.34 (4), p.2841-2865</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-42a00fbba54a427b7632bbe174323dc8d92c0a1268c868f2cb21ef4676b3c9e33</cites><orcidid>0000-0003-4697-898X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10884-020-09854-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10884-020-09854-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rodrigues, H. M.</creatorcontrib><creatorcontrib>Caraballo, T.</creatorcontrib><creatorcontrib>Nakassima, G. K.</creatorcontrib><title>Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results.</description><subject>Applications of Mathematics</subject><subject>Banach spaces</subject><subject>Dichotomies</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Periodic functions</subject><subject>Perturbation</subject><subject>Robustness (mathematics)</subject><subject>Stability</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhpfQQtw0fyAnQc_baEfySnt0XTcJGFrycRZaeZQorCVbs4bmZ-QfV-4aeutphuF5H4a3qq4a_rXhXF1Tw7WWNQde807PZS3OqlkzV1B3APCh7FzyWkEnz6tPRK-cF0x0s-r9PvUHGiMSseTZ6vcuRYxjsAP7HtxLGtP2jYXILFsOdmJuMGK2QyDcsMWwTTSyX5hD2gTH1iGizSXqPeaTZ7U_2DGkSEfPXfQhhhELssVI5VyIbzZa98IedtYhfa4-ejsQXp7mRfX0Y_W4vK3XP2_ulot17UDxsZZgOfd9b-fSSlC9agX0PTZKChAbpzcdOG4baLXTrfbgemjQy1a1vXAdCnFRfZm8u5z2B6TRvKZDLu-QASWE0MWoCwUT5XIiyujNLoetzW-m4eZYvZmqN6V687d6c1SLKUQFjs-Y_6n_k_oDCp2Ivw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Rodrigues, H. M.</creator><creator>Caraballo, T.</creator><creator>Nakassima, G. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4697-898X</orcidid></search><sort><creationdate>20221201</creationdate><title>Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces</title><author>Rodrigues, H. M. ; Caraballo, T. ; Nakassima, G. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-42a00fbba54a427b7632bbe174323dc8d92c0a1268c868f2cb21ef4676b3c9e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Banach spaces</topic><topic>Dichotomies</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Periodic functions</topic><topic>Perturbation</topic><topic>Robustness (mathematics)</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, H. M.</creatorcontrib><creatorcontrib>Caraballo, T.</creatorcontrib><creatorcontrib>Nakassima, G. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, H. M.</au><au>Caraballo, T.</au><au>Nakassima, G. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>34</volume><issue>4</issue><spage>2841</spage><epage>2865</epage><pages>2841-2865</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-020-09854-3</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-4697-898X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7294 |
ispartof | Journal of dynamics and differential equations, 2022-12, Vol.34 (4), p.2841-2865 |
issn | 1040-7294 1572-9222 |
language | eng |
recordid | cdi_proquest_journals_2733387638 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Banach spaces Dichotomies Differential equations Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Periodic functions Perturbation Robustness (mathematics) Stability |
title | Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20Exponential%20Dichotomy%20in%20a%20Class%20of%20Generalised%20Almost%20Periodic%20Linear%20Differential%20Equations%20in%20Infinite%20Dimensional%20Banach%20Spaces&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Rodrigues,%20H.%20M.&rft.date=2022-12-01&rft.volume=34&rft.issue=4&rft.spage=2841&rft.epage=2865&rft.pages=2841-2865&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-020-09854-3&rft_dat=%3Cproquest_cross%3E2733387638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733387638&rft_id=info:pmid/&rfr_iscdi=true |