Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces

In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily sma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2022-12, Vol.34 (4), p.2841-2865
Hauptverfasser: Rodrigues, H. M., Caraballo, T., Nakassima, G. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2865
container_issue 4
container_start_page 2841
container_title Journal of dynamics and differential equations
container_volume 34
creator Rodrigues, H. M.
Caraballo, T.
Nakassima, G. K.
description In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results.
doi_str_mv 10.1007/s10884-020-09854-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733387638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733387638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-42a00fbba54a427b7632bbe174323dc8d92c0a1268c868f2cb21ef4676b3c9e33</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhpfQQtw0fyAnQc_baEfySnt0XTcJGFrycRZaeZQorCVbs4bmZ-QfV-4aeutphuF5H4a3qq4a_rXhXF1Tw7WWNQde807PZS3OqlkzV1B3APCh7FzyWkEnz6tPRK-cF0x0s-r9PvUHGiMSseTZ6vcuRYxjsAP7HtxLGtP2jYXILFsOdmJuMGK2QyDcsMWwTTSyX5hD2gTH1iGizSXqPeaTZ7U_2DGkSEfPXfQhhhELssVI5VyIbzZa98IedtYhfa4-ejsQXp7mRfX0Y_W4vK3XP2_ulot17UDxsZZgOfd9b-fSSlC9agX0PTZKChAbpzcdOG4baLXTrfbgemjQy1a1vXAdCnFRfZm8u5z2B6TRvKZDLu-QASWE0MWoCwUT5XIiyujNLoetzW-m4eZYvZmqN6V687d6c1SLKUQFjs-Y_6n_k_oDCp2Ivw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733387638</pqid></control><display><type>article</type><title>Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Rodrigues, H. M. ; Caraballo, T. ; Nakassima, G. K.</creator><creatorcontrib>Rodrigues, H. M. ; Caraballo, T. ; Nakassima, G. K.</creatorcontrib><description>In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-020-09854-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Banach spaces ; Dichotomies ; Differential equations ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Periodic functions ; Perturbation ; Robustness (mathematics) ; Stability</subject><ispartof>Journal of dynamics and differential equations, 2022-12, Vol.34 (4), p.2841-2865</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-42a00fbba54a427b7632bbe174323dc8d92c0a1268c868f2cb21ef4676b3c9e33</cites><orcidid>0000-0003-4697-898X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10884-020-09854-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10884-020-09854-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rodrigues, H. M.</creatorcontrib><creatorcontrib>Caraballo, T.</creatorcontrib><creatorcontrib>Nakassima, G. K.</creatorcontrib><title>Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results.</description><subject>Applications of Mathematics</subject><subject>Banach spaces</subject><subject>Dichotomies</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Periodic functions</subject><subject>Perturbation</subject><subject>Robustness (mathematics)</subject><subject>Stability</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhpfQQtw0fyAnQc_baEfySnt0XTcJGFrycRZaeZQorCVbs4bmZ-QfV-4aeutphuF5H4a3qq4a_rXhXF1Tw7WWNQde807PZS3OqlkzV1B3APCh7FzyWkEnz6tPRK-cF0x0s-r9PvUHGiMSseTZ6vcuRYxjsAP7HtxLGtP2jYXILFsOdmJuMGK2QyDcsMWwTTSyX5hD2gTH1iGizSXqPeaTZ7U_2DGkSEfPXfQhhhELssVI5VyIbzZa98IedtYhfa4-ejsQXp7mRfX0Y_W4vK3XP2_ulot17UDxsZZgOfd9b-fSSlC9agX0PTZKChAbpzcdOG4baLXTrfbgemjQy1a1vXAdCnFRfZm8u5z2B6TRvKZDLu-QASWE0MWoCwUT5XIiyujNLoetzW-m4eZYvZmqN6V687d6c1SLKUQFjs-Y_6n_k_oDCp2Ivw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Rodrigues, H. M.</creator><creator>Caraballo, T.</creator><creator>Nakassima, G. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4697-898X</orcidid></search><sort><creationdate>20221201</creationdate><title>Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces</title><author>Rodrigues, H. M. ; Caraballo, T. ; Nakassima, G. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-42a00fbba54a427b7632bbe174323dc8d92c0a1268c868f2cb21ef4676b3c9e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Banach spaces</topic><topic>Dichotomies</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Periodic functions</topic><topic>Perturbation</topic><topic>Robustness (mathematics)</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, H. M.</creatorcontrib><creatorcontrib>Caraballo, T.</creatorcontrib><creatorcontrib>Nakassima, G. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, H. M.</au><au>Caraballo, T.</au><au>Nakassima, G. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>34</volume><issue>4</issue><spage>2841</spage><epage>2865</epage><pages>2841-2865</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-020-09854-3</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-4697-898X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-7294
ispartof Journal of dynamics and differential equations, 2022-12, Vol.34 (4), p.2841-2865
issn 1040-7294
1572-9222
language eng
recordid cdi_proquest_journals_2733387638
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Banach spaces
Dichotomies
Differential equations
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Periodic functions
Perturbation
Robustness (mathematics)
Stability
title Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20Exponential%20Dichotomy%20in%20a%20Class%20of%20Generalised%20Almost%20Periodic%20Linear%20Differential%20Equations%20in%20Infinite%20Dimensional%20Banach%20Spaces&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Rodrigues,%20H.%20M.&rft.date=2022-12-01&rft.volume=34&rft.issue=4&rft.spage=2841&rft.epage=2865&rft.pages=2841-2865&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-020-09854-3&rft_dat=%3Cproquest_cross%3E2733387638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733387638&rft_id=info:pmid/&rfr_iscdi=true