Quantifying the role of antiferromagnetic fluctuations in the superconductivity of the doped Hubbard model
Superconductivity arises from the pairing of charge- e electrons into charge-2 e bosons—called Cooper pairs—and their condensation into a coherent quantum state. The exact mechanism by which electrons pair up into Cooper pairs in high-temperature superconductors is still not understood. One of the p...
Gespeichert in:
Veröffentlicht in: | Nature physics 2022-11, Vol.18 (11), p.1293-1296 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1296 |
---|---|
container_issue | 11 |
container_start_page | 1293 |
container_title | Nature physics |
container_volume | 18 |
creator | Dong, Xinyang Gull, Emanuel Millis, Andrew J. |
description | Superconductivity arises from the pairing of charge-
e
electrons into charge-2
e
bosons—called Cooper pairs—and their condensation into a coherent quantum state. The exact mechanism by which electrons pair up into Cooper pairs in high-temperature superconductors is still not understood. One of the plausible candidates is that spin fluctuations can provide an attractive effective interaction that enables this
1
–
3
. Here we study the contribution of the electron–spin-fluctuation coupling to the superconducting state of the two-dimensional Hubbard model within dynamical cluster approximation
4
using a numerically exact continuous-time Monte Carlo solver
5
. We show that only about half of the superconductivity can be attributed to a pairing mechanism arising from treating spin fluctuations as a pairing boson in the standard one-loop theory. The rest of the pairing interaction must come from as-yet unidentified higher-energy processes.
Fluctuations arising from proximity to an antiferromagnetic state may be a mechanism for electron pairing in high-temperature superconductors. Now numerics show that only about half of the pairing interaction can be attributed to spin fluctuations considered in spin fluctuation theory. |
doi_str_mv | 10.1038/s41567-022-01710-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732914685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732914685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2165794c78f436fd3756f0ab8ff668d33d78863f6457f2b4eff5102de7daf78e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgejS3SdKlFLVCQQRdh8wkqSnTpCYZoX16px3RnatzOP_lwAfANUa3GFF5lxmuuagQIRXCAqNqfwImWLC6Ikzi099d0HNwkfMaIUY4phOwfu11KN7tfFjB8mFhip2F0cHj1aYUN3oVbPEtdF3fll4XH0OGPhzdud_a1MZgBsl_-bI7RA-CiVtr4KJvGp0M3ERju0tw5nSX7dXPnIL3x4e3-aJavjw9z--XVUvxrFQE81rMWCukY5Q7Q0XNHdKNdI5zaSg1QkpOHWe1cKRh1rkaI2KsMNoJaekU3Iy92xQ_e5uLWsc-heGlIoKSGWZc1oOLjK42xZyTdWqb_EanncJIHZiqkakamKojU7UfQnQM5cEcVjb9Vf-T-gbfT3xf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732914685</pqid></control><display><type>article</type><title>Quantifying the role of antiferromagnetic fluctuations in the superconductivity of the doped Hubbard model</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Xinyang ; Gull, Emanuel ; Millis, Andrew J.</creator><creatorcontrib>Dong, Xinyang ; Gull, Emanuel ; Millis, Andrew J.</creatorcontrib><description>Superconductivity arises from the pairing of charge-
e
electrons into charge-2
e
bosons—called Cooper pairs—and their condensation into a coherent quantum state. The exact mechanism by which electrons pair up into Cooper pairs in high-temperature superconductors is still not understood. One of the plausible candidates is that spin fluctuations can provide an attractive effective interaction that enables this
1
–
3
. Here we study the contribution of the electron–spin-fluctuation coupling to the superconducting state of the two-dimensional Hubbard model within dynamical cluster approximation
4
using a numerically exact continuous-time Monte Carlo solver
5
. We show that only about half of the superconductivity can be attributed to a pairing mechanism arising from treating spin fluctuations as a pairing boson in the standard one-loop theory. The rest of the pairing interaction must come from as-yet unidentified higher-energy processes.
Fluctuations arising from proximity to an antiferromagnetic state may be a mechanism for electron pairing in high-temperature superconductors. Now numerics show that only about half of the pairing interaction can be attributed to spin fluctuations considered in spin fluctuation theory.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01710-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/119/995 ; Antiferromagnetism ; Atomic ; Bosons ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Cooper pairs ; Electron spin ; Electrons ; Fluctuation theory ; Fluctuations ; High temperature ; High temperature superconductors ; Letter ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Superconductivity ; Theoretical ; Two dimensional models</subject><ispartof>Nature physics, 2022-11, Vol.18 (11), p.1293-1296</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2165794c78f436fd3756f0ab8ff668d33d78863f6457f2b4eff5102de7daf78e3</citedby><cites>FETCH-LOGICAL-c319t-2165794c78f436fd3756f0ab8ff668d33d78863f6457f2b4eff5102de7daf78e3</cites><orcidid>0000-0002-6082-1260 ; 0000-0001-9413-6344 ; 0000-0002-7414-8476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01710-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01710-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Dong, Xinyang</creatorcontrib><creatorcontrib>Gull, Emanuel</creatorcontrib><creatorcontrib>Millis, Andrew J.</creatorcontrib><title>Quantifying the role of antiferromagnetic fluctuations in the superconductivity of the doped Hubbard model</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Superconductivity arises from the pairing of charge-
e
electrons into charge-2
e
bosons—called Cooper pairs—and their condensation into a coherent quantum state. The exact mechanism by which electrons pair up into Cooper pairs in high-temperature superconductors is still not understood. One of the plausible candidates is that spin fluctuations can provide an attractive effective interaction that enables this
1
–
3
. Here we study the contribution of the electron–spin-fluctuation coupling to the superconducting state of the two-dimensional Hubbard model within dynamical cluster approximation
4
using a numerically exact continuous-time Monte Carlo solver
5
. We show that only about half of the superconductivity can be attributed to a pairing mechanism arising from treating spin fluctuations as a pairing boson in the standard one-loop theory. The rest of the pairing interaction must come from as-yet unidentified higher-energy processes.
Fluctuations arising from proximity to an antiferromagnetic state may be a mechanism for electron pairing in high-temperature superconductors. Now numerics show that only about half of the pairing interaction can be attributed to spin fluctuations considered in spin fluctuation theory.</description><subject>639/766/119/1003</subject><subject>639/766/119/995</subject><subject>Antiferromagnetism</subject><subject>Atomic</subject><subject>Bosons</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cooper pairs</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Fluctuation theory</subject><subject>Fluctuations</subject><subject>High temperature</subject><subject>High temperature superconductors</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Superconductivity</subject><subject>Theoretical</subject><subject>Two dimensional models</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgejS3SdKlFLVCQQRdh8wkqSnTpCYZoX16px3RnatzOP_lwAfANUa3GFF5lxmuuagQIRXCAqNqfwImWLC6Ikzi099d0HNwkfMaIUY4phOwfu11KN7tfFjB8mFhip2F0cHj1aYUN3oVbPEtdF3fll4XH0OGPhzdud_a1MZgBsl_-bI7RA-CiVtr4KJvGp0M3ERju0tw5nSX7dXPnIL3x4e3-aJavjw9z--XVUvxrFQE81rMWCukY5Q7Q0XNHdKNdI5zaSg1QkpOHWe1cKRh1rkaI2KsMNoJaekU3Iy92xQ_e5uLWsc-heGlIoKSGWZc1oOLjK42xZyTdWqb_EanncJIHZiqkakamKojU7UfQnQM5cEcVjb9Vf-T-gbfT3xf</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Dong, Xinyang</creator><creator>Gull, Emanuel</creator><creator>Millis, Andrew J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6082-1260</orcidid><orcidid>https://orcid.org/0000-0001-9413-6344</orcidid><orcidid>https://orcid.org/0000-0002-7414-8476</orcidid></search><sort><creationdate>20221101</creationdate><title>Quantifying the role of antiferromagnetic fluctuations in the superconductivity of the doped Hubbard model</title><author>Dong, Xinyang ; Gull, Emanuel ; Millis, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2165794c78f436fd3756f0ab8ff668d33d78863f6457f2b4eff5102de7daf78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/119/1003</topic><topic>639/766/119/995</topic><topic>Antiferromagnetism</topic><topic>Atomic</topic><topic>Bosons</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cooper pairs</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Fluctuation theory</topic><topic>Fluctuations</topic><topic>High temperature</topic><topic>High temperature superconductors</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Superconductivity</topic><topic>Theoretical</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Xinyang</creatorcontrib><creatorcontrib>Gull, Emanuel</creatorcontrib><creatorcontrib>Millis, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Xinyang</au><au>Gull, Emanuel</au><au>Millis, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the role of antiferromagnetic fluctuations in the superconductivity of the doped Hubbard model</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>18</volume><issue>11</issue><spage>1293</spage><epage>1296</epage><pages>1293-1296</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Superconductivity arises from the pairing of charge-
e
electrons into charge-2
e
bosons—called Cooper pairs—and their condensation into a coherent quantum state. The exact mechanism by which electrons pair up into Cooper pairs in high-temperature superconductors is still not understood. One of the plausible candidates is that spin fluctuations can provide an attractive effective interaction that enables this
1
–
3
. Here we study the contribution of the electron–spin-fluctuation coupling to the superconducting state of the two-dimensional Hubbard model within dynamical cluster approximation
4
using a numerically exact continuous-time Monte Carlo solver
5
. We show that only about half of the superconductivity can be attributed to a pairing mechanism arising from treating spin fluctuations as a pairing boson in the standard one-loop theory. The rest of the pairing interaction must come from as-yet unidentified higher-energy processes.
Fluctuations arising from proximity to an antiferromagnetic state may be a mechanism for electron pairing in high-temperature superconductors. Now numerics show that only about half of the pairing interaction can be attributed to spin fluctuations considered in spin fluctuation theory.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01710-z</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6082-1260</orcidid><orcidid>https://orcid.org/0000-0001-9413-6344</orcidid><orcidid>https://orcid.org/0000-0002-7414-8476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2022-11, Vol.18 (11), p.1293-1296 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2732914685 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/766/119/1003 639/766/119/995 Antiferromagnetism Atomic Bosons Classical and Continuum Physics Complex Systems Condensed Matter Physics Cooper pairs Electron spin Electrons Fluctuation theory Fluctuations High temperature High temperature superconductors Letter Mathematical and Computational Physics Mathematical models Molecular Optical and Plasma Physics Physics Physics and Astronomy Superconductivity Theoretical Two dimensional models |
title | Quantifying the role of antiferromagnetic fluctuations in the superconductivity of the doped Hubbard model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20role%20of%20antiferromagnetic%20fluctuations%20in%20the%20superconductivity%20of%20the%20doped%20Hubbard%20model&rft.jtitle=Nature%20physics&rft.au=Dong,%20Xinyang&rft.date=2022-11-01&rft.volume=18&rft.issue=11&rft.spage=1293&rft.epage=1296&rft.pages=1293-1296&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01710-z&rft_dat=%3Cproquest_cross%3E2732914685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732914685&rft_id=info:pmid/&rfr_iscdi=true |