Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction
Aluminized AISI 321 steels applied as heat exchange tube are generally subjected to creep–fatigue (C‐F) exposure during service. Remaining tensile and creep performance of this steel at 620°C were therefore studied under prior C‐F deformation. Results revealed that residual properties exhibit an ini...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2022-12, Vol.45 (12), p.3746-3763 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3763 |
---|---|
container_issue | 12 |
container_start_page | 3746 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 45 |
creator | Chen, Huitao Li, Wei Chen, Wei Zhou, Libo Chen, Jian Zhang, Shengde Chen, Anqi |
description | Aluminized AISI 321 steels applied as heat exchange tube are generally subjected to creep–fatigue (C‐F) exposure during service. Remaining tensile and creep performance of this steel at 620°C were therefore studied under prior C‐F deformation. Results revealed that residual properties exhibit an initial increase and followed degradation with rising lifetime fraction of prior C‐F. The tensile strength and creep lifespan reach highest at 30% lifetime fraction, since dislocation cell networks are well developed and secondary nanotwins are activated at substrate. Additionally, dynamic recovery and wavy slips occurred in coatings partially accommodate local plastic deformations and inhibit defect initiations, avoiding premature material fracture. On the other hand, these networks could restrain the increase in coating thicknesses. When the lifetime fraction of prior C‐F increases to 80%, declined remnant properties are observed, which is attributed to the recovery of dislocation cells and carbide coarsening. Meanwhile, coating microcracks also accelerate steel failure. |
doi_str_mv | 10.1111/ffe.13832 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732876416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732876416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-f965c76b1f5a91380b0e4463b3286bc7a578d5b2bceab2a869f69d8347005113</originalsourceid><addsrcrecordid>eNp1kM9KxDAQxoMouK4efIOAJw_dzZ82aY-y7OqCIOgevIW0nUiWbromKaIg-A6-oU9itF6dy8zhN9_M9yF0TsmMppobAzPKS84O0ITmgmRMVMUhmpSyEJksysdjdBLClhAqcs4n6P0edk67iCO4YDvA2rW48QB7vPf9Hny0EHBvsO6GnXX2DVp8tX5YY84o1kNIazYCDlFb10EIaQLo8OBa8EnB9n5U-_r4NDrapwGwdRG8bqLt3Sk6MroLcPbXp2izWm4WN9nt3fV6cXWbNaySLDOVKBopamoKXSV3pCaQ54LXnJWibqQuZNkWNasb0DXTpaiMqNqS55KQglI-RRejbLL0PECIatsP3qWLismkIUVORaIuR6rxfQgejEr_77R_VZSon3BVClf9hpvY-ci-pMxe_wfVarUcN74Bxmx9Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732876416</pqid></control><display><type>article</type><title>Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Huitao ; Li, Wei ; Chen, Wei ; Zhou, Libo ; Chen, Jian ; Zhang, Shengde ; Chen, Anqi</creator><creatorcontrib>Chen, Huitao ; Li, Wei ; Chen, Wei ; Zhou, Libo ; Chen, Jian ; Zhang, Shengde ; Chen, Anqi</creatorcontrib><description>Aluminized AISI 321 steels applied as heat exchange tube are generally subjected to creep–fatigue (C‐F) exposure during service. Remaining tensile and creep performance of this steel at 620°C were therefore studied under prior C‐F deformation. Results revealed that residual properties exhibit an initial increase and followed degradation with rising lifetime fraction of prior C‐F. The tensile strength and creep lifespan reach highest at 30% lifetime fraction, since dislocation cell networks are well developed and secondary nanotwins are activated at substrate. Additionally, dynamic recovery and wavy slips occurred in coatings partially accommodate local plastic deformations and inhibit defect initiations, avoiding premature material fracture. On the other hand, these networks could restrain the increase in coating thicknesses. When the lifetime fraction of prior C‐F increases to 80%, declined remnant properties are observed, which is attributed to the recovery of dislocation cells and carbide coarsening. Meanwhile, coating microcracks also accelerate steel failure.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13832</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>AISI 321 stainless steel ; Aluminizing ; Austenitic stainless steels ; Creep (materials) ; Deformation ; deformation mechanism ; Heat exchanger tubes ; Metal fatigue ; Microcracks ; microstructure ; prior creep–fatigue interaction ; remnant creep behavior ; residual tensile property ; Substrates ; Tensile strength</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2022-12, Vol.45 (12), p.3746-3763</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 Wiley Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-f965c76b1f5a91380b0e4463b3286bc7a578d5b2bceab2a869f69d8347005113</citedby><cites>FETCH-LOGICAL-c2972-f965c76b1f5a91380b0e4463b3286bc7a578d5b2bceab2a869f69d8347005113</cites><orcidid>0000-0001-6408-4686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13832$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13832$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Huitao</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhou, Libo</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Zhang, Shengde</creatorcontrib><creatorcontrib>Chen, Anqi</creatorcontrib><title>Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction</title><title>Fatigue & fracture of engineering materials & structures</title><description>Aluminized AISI 321 steels applied as heat exchange tube are generally subjected to creep–fatigue (C‐F) exposure during service. Remaining tensile and creep performance of this steel at 620°C were therefore studied under prior C‐F deformation. Results revealed that residual properties exhibit an initial increase and followed degradation with rising lifetime fraction of prior C‐F. The tensile strength and creep lifespan reach highest at 30% lifetime fraction, since dislocation cell networks are well developed and secondary nanotwins are activated at substrate. Additionally, dynamic recovery and wavy slips occurred in coatings partially accommodate local plastic deformations and inhibit defect initiations, avoiding premature material fracture. On the other hand, these networks could restrain the increase in coating thicknesses. When the lifetime fraction of prior C‐F increases to 80%, declined remnant properties are observed, which is attributed to the recovery of dislocation cells and carbide coarsening. Meanwhile, coating microcracks also accelerate steel failure.</description><subject>AISI 321 stainless steel</subject><subject>Aluminizing</subject><subject>Austenitic stainless steels</subject><subject>Creep (materials)</subject><subject>Deformation</subject><subject>deformation mechanism</subject><subject>Heat exchanger tubes</subject><subject>Metal fatigue</subject><subject>Microcracks</subject><subject>microstructure</subject><subject>prior creep–fatigue interaction</subject><subject>remnant creep behavior</subject><subject>residual tensile property</subject><subject>Substrates</subject><subject>Tensile strength</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxDAQxoMouK4efIOAJw_dzZ82aY-y7OqCIOgevIW0nUiWbromKaIg-A6-oU9itF6dy8zhN9_M9yF0TsmMppobAzPKS84O0ITmgmRMVMUhmpSyEJksysdjdBLClhAqcs4n6P0edk67iCO4YDvA2rW48QB7vPf9Hny0EHBvsO6GnXX2DVp8tX5YY84o1kNIazYCDlFb10EIaQLo8OBa8EnB9n5U-_r4NDrapwGwdRG8bqLt3Sk6MroLcPbXp2izWm4WN9nt3fV6cXWbNaySLDOVKBopamoKXSV3pCaQ54LXnJWibqQuZNkWNasb0DXTpaiMqNqS55KQglI-RRejbLL0PECIatsP3qWLismkIUVORaIuR6rxfQgejEr_77R_VZSon3BVClf9hpvY-ci-pMxe_wfVarUcN74Bxmx9Ug</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Chen, Huitao</creator><creator>Li, Wei</creator><creator>Chen, Wei</creator><creator>Zhou, Libo</creator><creator>Chen, Jian</creator><creator>Zhang, Shengde</creator><creator>Chen, Anqi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6408-4686</orcidid></search><sort><creationdate>202212</creationdate><title>Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction</title><author>Chen, Huitao ; Li, Wei ; Chen, Wei ; Zhou, Libo ; Chen, Jian ; Zhang, Shengde ; Chen, Anqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-f965c76b1f5a91380b0e4463b3286bc7a578d5b2bceab2a869f69d8347005113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AISI 321 stainless steel</topic><topic>Aluminizing</topic><topic>Austenitic stainless steels</topic><topic>Creep (materials)</topic><topic>Deformation</topic><topic>deformation mechanism</topic><topic>Heat exchanger tubes</topic><topic>Metal fatigue</topic><topic>Microcracks</topic><topic>microstructure</topic><topic>prior creep–fatigue interaction</topic><topic>remnant creep behavior</topic><topic>residual tensile property</topic><topic>Substrates</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huitao</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhou, Libo</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Zhang, Shengde</creatorcontrib><creatorcontrib>Chen, Anqi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huitao</au><au>Li, Wei</au><au>Chen, Wei</au><au>Zhou, Libo</au><au>Chen, Jian</au><au>Zhang, Shengde</au><au>Chen, Anqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2022-12</date><risdate>2022</risdate><volume>45</volume><issue>12</issue><spage>3746</spage><epage>3763</epage><pages>3746-3763</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Aluminized AISI 321 steels applied as heat exchange tube are generally subjected to creep–fatigue (C‐F) exposure during service. Remaining tensile and creep performance of this steel at 620°C were therefore studied under prior C‐F deformation. Results revealed that residual properties exhibit an initial increase and followed degradation with rising lifetime fraction of prior C‐F. The tensile strength and creep lifespan reach highest at 30% lifetime fraction, since dislocation cell networks are well developed and secondary nanotwins are activated at substrate. Additionally, dynamic recovery and wavy slips occurred in coatings partially accommodate local plastic deformations and inhibit defect initiations, avoiding premature material fracture. On the other hand, these networks could restrain the increase in coating thicknesses. When the lifetime fraction of prior C‐F increases to 80%, declined remnant properties are observed, which is attributed to the recovery of dislocation cells and carbide coarsening. Meanwhile, coating microcracks also accelerate steel failure.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13832</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6408-4686</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2022-12, Vol.45 (12), p.3746-3763 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2732876416 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | AISI 321 stainless steel Aluminizing Austenitic stainless steels Creep (materials) Deformation deformation mechanism Heat exchanger tubes Metal fatigue Microcracks microstructure prior creep–fatigue interaction remnant creep behavior residual tensile property Substrates Tensile strength |
title | Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remnant%20tensile%20and%20creep%20properties%20of%20aluminized%20AISI%20321%20austenite%20stainless%20steel%20under%20prior%20creep%E2%80%93fatigue%20interaction&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Chen,%20Huitao&rft.date=2022-12&rft.volume=45&rft.issue=12&rft.spage=3746&rft.epage=3763&rft.pages=3746-3763&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13832&rft_dat=%3Cproquest_cross%3E2732876416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732876416&rft_id=info:pmid/&rfr_iscdi=true |