Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction

Aluminized AISI 321 steels applied as heat exchange tube are generally subjected to creep–fatigue (C‐F) exposure during service. Remaining tensile and creep performance of this steel at 620°C were therefore studied under prior C‐F deformation. Results revealed that residual properties exhibit an ini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2022-12, Vol.45 (12), p.3746-3763
Hauptverfasser: Chen, Huitao, Li, Wei, Chen, Wei, Zhou, Libo, Chen, Jian, Zhang, Shengde, Chen, Anqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3763
container_issue 12
container_start_page 3746
container_title Fatigue & fracture of engineering materials & structures
container_volume 45
creator Chen, Huitao
Li, Wei
Chen, Wei
Zhou, Libo
Chen, Jian
Zhang, Shengde
Chen, Anqi
description Aluminized AISI 321 steels applied as heat exchange tube are generally subjected to creep–fatigue (C‐F) exposure during service. Remaining tensile and creep performance of this steel at 620°C were therefore studied under prior C‐F deformation. Results revealed that residual properties exhibit an initial increase and followed degradation with rising lifetime fraction of prior C‐F. The tensile strength and creep lifespan reach highest at 30% lifetime fraction, since dislocation cell networks are well developed and secondary nanotwins are activated at substrate. Additionally, dynamic recovery and wavy slips occurred in coatings partially accommodate local plastic deformations and inhibit defect initiations, avoiding premature material fracture. On the other hand, these networks could restrain the increase in coating thicknesses. When the lifetime fraction of prior C‐F increases to 80%, declined remnant properties are observed, which is attributed to the recovery of dislocation cells and carbide coarsening. Meanwhile, coating microcracks also accelerate steel failure.
doi_str_mv 10.1111/ffe.13832
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732876416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732876416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-f965c76b1f5a91380b0e4463b3286bc7a578d5b2bceab2a869f69d8347005113</originalsourceid><addsrcrecordid>eNp1kM9KxDAQxoMouK4efIOAJw_dzZ82aY-y7OqCIOgevIW0nUiWbromKaIg-A6-oU9itF6dy8zhN9_M9yF0TsmMppobAzPKS84O0ITmgmRMVMUhmpSyEJksysdjdBLClhAqcs4n6P0edk67iCO4YDvA2rW48QB7vPf9Hny0EHBvsO6GnXX2DVp8tX5YY84o1kNIazYCDlFb10EIaQLo8OBa8EnB9n5U-_r4NDrapwGwdRG8bqLt3Sk6MroLcPbXp2izWm4WN9nt3fV6cXWbNaySLDOVKBopamoKXSV3pCaQ54LXnJWibqQuZNkWNasb0DXTpaiMqNqS55KQglI-RRejbLL0PECIatsP3qWLismkIUVORaIuR6rxfQgejEr_77R_VZSon3BVClf9hpvY-ci-pMxe_wfVarUcN74Bxmx9Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732876416</pqid></control><display><type>article</type><title>Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Huitao ; Li, Wei ; Chen, Wei ; Zhou, Libo ; Chen, Jian ; Zhang, Shengde ; Chen, Anqi</creator><creatorcontrib>Chen, Huitao ; Li, Wei ; Chen, Wei ; Zhou, Libo ; Chen, Jian ; Zhang, Shengde ; Chen, Anqi</creatorcontrib><description>Aluminized AISI 321 steels applied as heat exchange tube are generally subjected to creep–fatigue (C‐F) exposure during service. Remaining tensile and creep performance of this steel at 620°C were therefore studied under prior C‐F deformation. Results revealed that residual properties exhibit an initial increase and followed degradation with rising lifetime fraction of prior C‐F. The tensile strength and creep lifespan reach highest at 30% lifetime fraction, since dislocation cell networks are well developed and secondary nanotwins are activated at substrate. Additionally, dynamic recovery and wavy slips occurred in coatings partially accommodate local plastic deformations and inhibit defect initiations, avoiding premature material fracture. On the other hand, these networks could restrain the increase in coating thicknesses. When the lifetime fraction of prior C‐F increases to 80%, declined remnant properties are observed, which is attributed to the recovery of dislocation cells and carbide coarsening. Meanwhile, coating microcracks also accelerate steel failure.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13832</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>AISI 321 stainless steel ; Aluminizing ; Austenitic stainless steels ; Creep (materials) ; Deformation ; deformation mechanism ; Heat exchanger tubes ; Metal fatigue ; Microcracks ; microstructure ; prior creep–fatigue interaction ; remnant creep behavior ; residual tensile property ; Substrates ; Tensile strength</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2022-12, Vol.45 (12), p.3746-3763</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 Wiley Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-f965c76b1f5a91380b0e4463b3286bc7a578d5b2bceab2a869f69d8347005113</citedby><cites>FETCH-LOGICAL-c2972-f965c76b1f5a91380b0e4463b3286bc7a578d5b2bceab2a869f69d8347005113</cites><orcidid>0000-0001-6408-4686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13832$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13832$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Huitao</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhou, Libo</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Zhang, Shengde</creatorcontrib><creatorcontrib>Chen, Anqi</creatorcontrib><title>Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>Aluminized AISI 321 steels applied as heat exchange tube are generally subjected to creep–fatigue (C‐F) exposure during service. Remaining tensile and creep performance of this steel at 620°C were therefore studied under prior C‐F deformation. Results revealed that residual properties exhibit an initial increase and followed degradation with rising lifetime fraction of prior C‐F. The tensile strength and creep lifespan reach highest at 30% lifetime fraction, since dislocation cell networks are well developed and secondary nanotwins are activated at substrate. Additionally, dynamic recovery and wavy slips occurred in coatings partially accommodate local plastic deformations and inhibit defect initiations, avoiding premature material fracture. On the other hand, these networks could restrain the increase in coating thicknesses. When the lifetime fraction of prior C‐F increases to 80%, declined remnant properties are observed, which is attributed to the recovery of dislocation cells and carbide coarsening. Meanwhile, coating microcracks also accelerate steel failure.</description><subject>AISI 321 stainless steel</subject><subject>Aluminizing</subject><subject>Austenitic stainless steels</subject><subject>Creep (materials)</subject><subject>Deformation</subject><subject>deformation mechanism</subject><subject>Heat exchanger tubes</subject><subject>Metal fatigue</subject><subject>Microcracks</subject><subject>microstructure</subject><subject>prior creep–fatigue interaction</subject><subject>remnant creep behavior</subject><subject>residual tensile property</subject><subject>Substrates</subject><subject>Tensile strength</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxDAQxoMouK4efIOAJw_dzZ82aY-y7OqCIOgevIW0nUiWbromKaIg-A6-oU9itF6dy8zhN9_M9yF0TsmMppobAzPKS84O0ITmgmRMVMUhmpSyEJksysdjdBLClhAqcs4n6P0edk67iCO4YDvA2rW48QB7vPf9Hny0EHBvsO6GnXX2DVp8tX5YY84o1kNIazYCDlFb10EIaQLo8OBa8EnB9n5U-_r4NDrapwGwdRG8bqLt3Sk6MroLcPbXp2izWm4WN9nt3fV6cXWbNaySLDOVKBopamoKXSV3pCaQ54LXnJWibqQuZNkWNasb0DXTpaiMqNqS55KQglI-RRejbLL0PECIatsP3qWLismkIUVORaIuR6rxfQgejEr_77R_VZSon3BVClf9hpvY-ci-pMxe_wfVarUcN74Bxmx9Ug</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Chen, Huitao</creator><creator>Li, Wei</creator><creator>Chen, Wei</creator><creator>Zhou, Libo</creator><creator>Chen, Jian</creator><creator>Zhang, Shengde</creator><creator>Chen, Anqi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6408-4686</orcidid></search><sort><creationdate>202212</creationdate><title>Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction</title><author>Chen, Huitao ; Li, Wei ; Chen, Wei ; Zhou, Libo ; Chen, Jian ; Zhang, Shengde ; Chen, Anqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-f965c76b1f5a91380b0e4463b3286bc7a578d5b2bceab2a869f69d8347005113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AISI 321 stainless steel</topic><topic>Aluminizing</topic><topic>Austenitic stainless steels</topic><topic>Creep (materials)</topic><topic>Deformation</topic><topic>deformation mechanism</topic><topic>Heat exchanger tubes</topic><topic>Metal fatigue</topic><topic>Microcracks</topic><topic>microstructure</topic><topic>prior creep–fatigue interaction</topic><topic>remnant creep behavior</topic><topic>residual tensile property</topic><topic>Substrates</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huitao</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhou, Libo</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Zhang, Shengde</creatorcontrib><creatorcontrib>Chen, Anqi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huitao</au><au>Li, Wei</au><au>Chen, Wei</au><au>Zhou, Libo</au><au>Chen, Jian</au><au>Zhang, Shengde</au><au>Chen, Anqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2022-12</date><risdate>2022</risdate><volume>45</volume><issue>12</issue><spage>3746</spage><epage>3763</epage><pages>3746-3763</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Aluminized AISI 321 steels applied as heat exchange tube are generally subjected to creep–fatigue (C‐F) exposure during service. Remaining tensile and creep performance of this steel at 620°C were therefore studied under prior C‐F deformation. Results revealed that residual properties exhibit an initial increase and followed degradation with rising lifetime fraction of prior C‐F. The tensile strength and creep lifespan reach highest at 30% lifetime fraction, since dislocation cell networks are well developed and secondary nanotwins are activated at substrate. Additionally, dynamic recovery and wavy slips occurred in coatings partially accommodate local plastic deformations and inhibit defect initiations, avoiding premature material fracture. On the other hand, these networks could restrain the increase in coating thicknesses. When the lifetime fraction of prior C‐F increases to 80%, declined remnant properties are observed, which is attributed to the recovery of dislocation cells and carbide coarsening. Meanwhile, coating microcracks also accelerate steel failure.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13832</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6408-4686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2022-12, Vol.45 (12), p.3746-3763
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2732876416
source Wiley Online Library Journals Frontfile Complete
subjects AISI 321 stainless steel
Aluminizing
Austenitic stainless steels
Creep (materials)
Deformation
deformation mechanism
Heat exchanger tubes
Metal fatigue
Microcracks
microstructure
prior creep–fatigue interaction
remnant creep behavior
residual tensile property
Substrates
Tensile strength
title Remnant tensile and creep properties of aluminized AISI 321 austenite stainless steel under prior creep–fatigue interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remnant%20tensile%20and%20creep%20properties%20of%20aluminized%20AISI%20321%20austenite%20stainless%20steel%20under%20prior%20creep%E2%80%93fatigue%20interaction&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Chen,%20Huitao&rft.date=2022-12&rft.volume=45&rft.issue=12&rft.spage=3746&rft.epage=3763&rft.pages=3746-3763&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13832&rft_dat=%3Cproquest_cross%3E2732876416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732876416&rft_id=info:pmid/&rfr_iscdi=true