Boost‐Defence for resilient IoT networks: A head‐to‐toe approach
The Internet of Things (IoT) is an emerging technology that is considered a key enabler for next‐generation smart cities, industries, security services and economies. IoT networks allow connected devices to communicate with each other automatically without human intervention which empowers innovativ...
Gespeichert in:
Veröffentlicht in: | Expert systems 2022-12, Vol.39 (10), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Expert systems |
container_volume | 39 |
creator | Abu Al‐Haija, Qasem Al Badawi, Ahmad Bojja, Giridhar Reddy |
description | The Internet of Things (IoT) is an emerging technology that is considered a key enabler for next‐generation smart cities, industries, security services and economies. IoT networks allow connected devices to communicate with each other automatically without human intervention which empowers innovative solutions for pressing challenges and limitations of current technologies required to materialize smart environments. Due to the concrete involvement of IoT networks in critical infrastructures and cyber‐physical systems, defending them against cyber‐attacks has led to extensive research efforts to propose effective countermeasures against such attacks. In this work, we present Boost‐Defence: a framework to secure IoT networks from a large vector of cyber‐attacks at different IoT layers. We employ the AdaBoost machine learning technique combined with Decision Trees and extensive data engineering techniques to construct a robust classifier for detecting and classifying several cyber‐attacks in IoT networks. We evaluate our system on the TON_IoT_2020 datasets, a collection of datasets compiled specifically for 3‐layered IoT systems comprising: physical, network and application layers. We contrast the performance of our system against existing state‐of‐the‐art solutions. Our experimental analysis demonstrates the capability of our framework in providing superior classification accuracy and lower types 1 and 2 errors for constructing more resilient IoT infrastructures. |
doi_str_mv | 10.1111/exsy.12934 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732806471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732806471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3014-62be3f05d401e1bcfea371a49a7ecf1332f8ab6d0f2725ebf3281e6c5aeedd3c3</originalsourceid><addsrcrecordid>eNp90M1OAjEQB_DGaCKiF5-giTeTxX7RgjfkQ0lIPIiJnppudxoWcYvtEuTmI_iMPomF9ewcZi6_mUn-CF1S0qGpbuAz7jqU9bk4Qi0qZC8jvC-OUYswKTOhGDlFZzEuCSFUKdlCkzvvY_3z9T0CB5UF7HzAAWK5KqGq8dTPcQX11oe3eIsHeAGmSLj2hwbYrNfBG7s4RyfOrCJc_M02ep6M58OHbPZ4Px0OZpnlhIpMshy4I91CEAo0tw4MV9SIvlFgHeWcuZ7JZUEcU6wLueOsR0HargEoCm55G101d9Pbjw3EWi_9JlTppWYqYSKFokldN8oGH2MAp9ehfDdhpynR-5z0Pid9yClh2uBtuYLdP1KPX55em51ffe9uEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732806471</pqid></control><display><type>article</type><title>Boost‐Defence for resilient IoT networks: A head‐to‐toe approach</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Abu Al‐Haija, Qasem ; Al Badawi, Ahmad ; Bojja, Giridhar Reddy</creator><creatorcontrib>Abu Al‐Haija, Qasem ; Al Badawi, Ahmad ; Bojja, Giridhar Reddy</creatorcontrib><description>The Internet of Things (IoT) is an emerging technology that is considered a key enabler for next‐generation smart cities, industries, security services and economies. IoT networks allow connected devices to communicate with each other automatically without human intervention which empowers innovative solutions for pressing challenges and limitations of current technologies required to materialize smart environments. Due to the concrete involvement of IoT networks in critical infrastructures and cyber‐physical systems, defending them against cyber‐attacks has led to extensive research efforts to propose effective countermeasures against such attacks. In this work, we present Boost‐Defence: a framework to secure IoT networks from a large vector of cyber‐attacks at different IoT layers. We employ the AdaBoost machine learning technique combined with Decision Trees and extensive data engineering techniques to construct a robust classifier for detecting and classifying several cyber‐attacks in IoT networks. We evaluate our system on the TON_IoT_2020 datasets, a collection of datasets compiled specifically for 3‐layered IoT systems comprising: physical, network and application layers. We contrast the performance of our system against existing state‐of‐the‐art solutions. Our experimental analysis demonstrates the capability of our framework in providing superior classification accuracy and lower types 1 and 2 errors for constructing more resilient IoT infrastructures.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12934</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Classification ; classification methods ; cyber security ; Datasets ; Decision trees ; Internet of Things ; intrusion detection systems ; Machine learning ; Networks ; New technology ; supervised learning</subject><ispartof>Expert systems, 2022-12, Vol.39 (10), p.n/a</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3014-62be3f05d401e1bcfea371a49a7ecf1332f8ab6d0f2725ebf3281e6c5aeedd3c3</citedby><cites>FETCH-LOGICAL-c3014-62be3f05d401e1bcfea371a49a7ecf1332f8ab6d0f2725ebf3281e6c5aeedd3c3</cites><orcidid>0000-0003-2422-0297 ; 0000-0001-7759-7368 ; 0000-0002-3897-2580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexsy.12934$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexsy.12934$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Abu Al‐Haija, Qasem</creatorcontrib><creatorcontrib>Al Badawi, Ahmad</creatorcontrib><creatorcontrib>Bojja, Giridhar Reddy</creatorcontrib><title>Boost‐Defence for resilient IoT networks: A head‐to‐toe approach</title><title>Expert systems</title><description>The Internet of Things (IoT) is an emerging technology that is considered a key enabler for next‐generation smart cities, industries, security services and economies. IoT networks allow connected devices to communicate with each other automatically without human intervention which empowers innovative solutions for pressing challenges and limitations of current technologies required to materialize smart environments. Due to the concrete involvement of IoT networks in critical infrastructures and cyber‐physical systems, defending them against cyber‐attacks has led to extensive research efforts to propose effective countermeasures against such attacks. In this work, we present Boost‐Defence: a framework to secure IoT networks from a large vector of cyber‐attacks at different IoT layers. We employ the AdaBoost machine learning technique combined with Decision Trees and extensive data engineering techniques to construct a robust classifier for detecting and classifying several cyber‐attacks in IoT networks. We evaluate our system on the TON_IoT_2020 datasets, a collection of datasets compiled specifically for 3‐layered IoT systems comprising: physical, network and application layers. We contrast the performance of our system against existing state‐of‐the‐art solutions. Our experimental analysis demonstrates the capability of our framework in providing superior classification accuracy and lower types 1 and 2 errors for constructing more resilient IoT infrastructures.</description><subject>Classification</subject><subject>classification methods</subject><subject>cyber security</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Internet of Things</subject><subject>intrusion detection systems</subject><subject>Machine learning</subject><subject>Networks</subject><subject>New technology</subject><subject>supervised learning</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M1OAjEQB_DGaCKiF5-giTeTxX7RgjfkQ0lIPIiJnppudxoWcYvtEuTmI_iMPomF9ewcZi6_mUn-CF1S0qGpbuAz7jqU9bk4Qi0qZC8jvC-OUYswKTOhGDlFZzEuCSFUKdlCkzvvY_3z9T0CB5UF7HzAAWK5KqGq8dTPcQX11oe3eIsHeAGmSLj2hwbYrNfBG7s4RyfOrCJc_M02ep6M58OHbPZ4Px0OZpnlhIpMshy4I91CEAo0tw4MV9SIvlFgHeWcuZ7JZUEcU6wLueOsR0HargEoCm55G101d9Pbjw3EWi_9JlTppWYqYSKFokldN8oGH2MAp9ehfDdhpynR-5z0Pid9yClh2uBtuYLdP1KPX55em51ffe9uEQ</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Abu Al‐Haija, Qasem</creator><creator>Al Badawi, Ahmad</creator><creator>Bojja, Giridhar Reddy</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2422-0297</orcidid><orcidid>https://orcid.org/0000-0001-7759-7368</orcidid><orcidid>https://orcid.org/0000-0002-3897-2580</orcidid></search><sort><creationdate>202212</creationdate><title>Boost‐Defence for resilient IoT networks: A head‐to‐toe approach</title><author>Abu Al‐Haija, Qasem ; Al Badawi, Ahmad ; Bojja, Giridhar Reddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3014-62be3f05d401e1bcfea371a49a7ecf1332f8ab6d0f2725ebf3281e6c5aeedd3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>classification methods</topic><topic>cyber security</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Internet of Things</topic><topic>intrusion detection systems</topic><topic>Machine learning</topic><topic>Networks</topic><topic>New technology</topic><topic>supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu Al‐Haija, Qasem</creatorcontrib><creatorcontrib>Al Badawi, Ahmad</creatorcontrib><creatorcontrib>Bojja, Giridhar Reddy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abu Al‐Haija, Qasem</au><au>Al Badawi, Ahmad</au><au>Bojja, Giridhar Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boost‐Defence for resilient IoT networks: A head‐to‐toe approach</atitle><jtitle>Expert systems</jtitle><date>2022-12</date><risdate>2022</risdate><volume>39</volume><issue>10</issue><epage>n/a</epage><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>The Internet of Things (IoT) is an emerging technology that is considered a key enabler for next‐generation smart cities, industries, security services and economies. IoT networks allow connected devices to communicate with each other automatically without human intervention which empowers innovative solutions for pressing challenges and limitations of current technologies required to materialize smart environments. Due to the concrete involvement of IoT networks in critical infrastructures and cyber‐physical systems, defending them against cyber‐attacks has led to extensive research efforts to propose effective countermeasures against such attacks. In this work, we present Boost‐Defence: a framework to secure IoT networks from a large vector of cyber‐attacks at different IoT layers. We employ the AdaBoost machine learning technique combined with Decision Trees and extensive data engineering techniques to construct a robust classifier for detecting and classifying several cyber‐attacks in IoT networks. We evaluate our system on the TON_IoT_2020 datasets, a collection of datasets compiled specifically for 3‐layered IoT systems comprising: physical, network and application layers. We contrast the performance of our system against existing state‐of‐the‐art solutions. Our experimental analysis demonstrates the capability of our framework in providing superior classification accuracy and lower types 1 and 2 errors for constructing more resilient IoT infrastructures.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.12934</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2422-0297</orcidid><orcidid>https://orcid.org/0000-0001-7759-7368</orcidid><orcidid>https://orcid.org/0000-0002-3897-2580</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4720 |
ispartof | Expert systems, 2022-12, Vol.39 (10), p.n/a |
issn | 0266-4720 1468-0394 |
language | eng |
recordid | cdi_proquest_journals_2732806471 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | Classification classification methods cyber security Datasets Decision trees Internet of Things intrusion detection systems Machine learning Networks New technology supervised learning |
title | Boost‐Defence for resilient IoT networks: A head‐to‐toe approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boost%E2%80%90Defence%20for%20resilient%20IoT%20networks:%20A%20head%E2%80%90to%E2%80%90toe%20approach&rft.jtitle=Expert%20systems&rft.au=Abu%20Al%E2%80%90Haija,%20Qasem&rft.date=2022-12&rft.volume=39&rft.issue=10&rft.epage=n/a&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12934&rft_dat=%3Cproquest_cross%3E2732806471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732806471&rft_id=info:pmid/&rfr_iscdi=true |