Universal rotation gauge via quantum anomalous Hall effect
Integer quantum Hall effect allows to gauge the resistance standard up to more than one part in a billion. Combining it with the speed of light, one obtains the fine-structure constant α ≈ 1/137, a dimensionless reference number that can be extracted from a physical experiment. Most exact notion of...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-11, Vol.121 (19) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 121 |
creator | Shuvaev, Alexey Pan, Lei Tai, Lixuan Zhang, Peng Wang, Kang L. Pimenov, Andrei |
description | Integer quantum Hall effect allows to gauge the resistance standard up to more than one part in a billion. Combining it with the speed of light, one obtains the fine-structure constant α
≈ 1/137, a dimensionless reference number that can be extracted from a physical experiment. Most exact notion of this value and especially its possible variation on the cosmological time scales is of enormous relevance for fundamental science. In an optical experiment, the fine-structure constant can be directly obtained as purely geometrical angle by measuring the quantized rotation of light polarization in two-dimensional quantum wells. In realistic conditions, high external magnetic fields have to be applied, which strongly affects possible attainable accuracy. An elegant solution of this problem is provided by quantum anomalous Hall effect where a universal quantized value can be obtained in zero magnetic field. Here, we measure the fine-structure constant in a direct optical experiment that requires no material adjustments or technical calibrations. By investigating the Faraday rotation at the interference maxima of the dielectric substrate, the angle close to one α is obtained at liquid helium temperatures without using a dilution refrigerator. Such calibration and parameter-free experiment provides a system-of-unit-independent access to universal quantum of rotation. |
doi_str_mv | 10.1063/5.0105159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732801254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732801254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-9e61f1bf4d4799ecf6ebb2060cb591bafb27514657545dafb801d5bf7535f0c43</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf8g4EmhMz_6ktWbDHXCwIs7hyRNRkfXbElb8L-3o0MPgqfHFz58H-8hdEvJjBLBH2FGKAEKxRmaUCJlximdn6MJIYRnogB6ia5S2g4RGOcT9LRuqt7FpGscQ6vbKjR4o7uNw32l8aHTTdvtsG7CTtehS3ip6xo7751tr9GF13VyN6c5RevXl8_FMlt9vL0vnleZ5YK1WeEE9dT4vMxlUTjrhTOGEUGsgYIa7Q2TQHMBEnIohzgntATjJXDwxOZ8iu7G3n0Mh86lVm1DF5thpWKSs4EzOKr7UdkYUorOq32sdjp-KUrU8TUK1Ok1g30YbbLVePMP7kP8hWpf-v_w3-ZvHXpxMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732801254</pqid></control><display><type>article</type><title>Universal rotation gauge via quantum anomalous Hall effect</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shuvaev, Alexey ; Pan, Lei ; Tai, Lixuan ; Zhang, Peng ; Wang, Kang L. ; Pimenov, Andrei</creator><creatorcontrib>Shuvaev, Alexey ; Pan, Lei ; Tai, Lixuan ; Zhang, Peng ; Wang, Kang L. ; Pimenov, Andrei</creatorcontrib><description>Integer quantum Hall effect allows to gauge the resistance standard up to more than one part in a billion. Combining it with the speed of light, one obtains the fine-structure constant α
≈ 1/137, a dimensionless reference number that can be extracted from a physical experiment. Most exact notion of this value and especially its possible variation on the cosmological time scales is of enormous relevance for fundamental science. In an optical experiment, the fine-structure constant can be directly obtained as purely geometrical angle by measuring the quantized rotation of light polarization in two-dimensional quantum wells. In realistic conditions, high external magnetic fields have to be applied, which strongly affects possible attainable accuracy. An elegant solution of this problem is provided by quantum anomalous Hall effect where a universal quantized value can be obtained in zero magnetic field. Here, we measure the fine-structure constant in a direct optical experiment that requires no material adjustments or technical calibrations. By investigating the Faraday rotation at the interference maxima of the dielectric substrate, the angle close to one α is obtained at liquid helium temperatures without using a dilution refrigerator. Such calibration and parameter-free experiment provides a system-of-unit-independent access to universal quantum of rotation.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0105159</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Dilution ; Dimensionless numbers ; Electromagnetism ; Experiments ; Faraday effect ; Light speed ; Liquid helium ; Magnetic fields ; Quantum Hall effect ; Quantum wells ; Substrates</subject><ispartof>Applied physics letters, 2022-11, Vol.121 (19)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-9e61f1bf4d4799ecf6ebb2060cb591bafb27514657545dafb801d5bf7535f0c43</citedby><cites>FETCH-LOGICAL-c362t-9e61f1bf4d4799ecf6ebb2060cb591bafb27514657545dafb801d5bf7535f0c43</cites><orcidid>0000-0001-6911-7117 ; 0000-0002-7059-3740 ; 0000-0002-9363-1279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0105159$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Shuvaev, Alexey</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Tai, Lixuan</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Wang, Kang L.</creatorcontrib><creatorcontrib>Pimenov, Andrei</creatorcontrib><title>Universal rotation gauge via quantum anomalous Hall effect</title><title>Applied physics letters</title><description>Integer quantum Hall effect allows to gauge the resistance standard up to more than one part in a billion. Combining it with the speed of light, one obtains the fine-structure constant α
≈ 1/137, a dimensionless reference number that can be extracted from a physical experiment. Most exact notion of this value and especially its possible variation on the cosmological time scales is of enormous relevance for fundamental science. In an optical experiment, the fine-structure constant can be directly obtained as purely geometrical angle by measuring the quantized rotation of light polarization in two-dimensional quantum wells. In realistic conditions, high external magnetic fields have to be applied, which strongly affects possible attainable accuracy. An elegant solution of this problem is provided by quantum anomalous Hall effect where a universal quantized value can be obtained in zero magnetic field. Here, we measure the fine-structure constant in a direct optical experiment that requires no material adjustments or technical calibrations. By investigating the Faraday rotation at the interference maxima of the dielectric substrate, the angle close to one α is obtained at liquid helium temperatures without using a dilution refrigerator. Such calibration and parameter-free experiment provides a system-of-unit-independent access to universal quantum of rotation.</description><subject>Applied physics</subject><subject>Dilution</subject><subject>Dimensionless numbers</subject><subject>Electromagnetism</subject><subject>Experiments</subject><subject>Faraday effect</subject><subject>Light speed</subject><subject>Liquid helium</subject><subject>Magnetic fields</subject><subject>Quantum Hall effect</subject><subject>Quantum wells</subject><subject>Substrates</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf8g4EmhMz_6ktWbDHXCwIs7hyRNRkfXbElb8L-3o0MPgqfHFz58H-8hdEvJjBLBH2FGKAEKxRmaUCJlximdn6MJIYRnogB6ia5S2g4RGOcT9LRuqt7FpGscQ6vbKjR4o7uNw32l8aHTTdvtsG7CTtehS3ip6xo7751tr9GF13VyN6c5RevXl8_FMlt9vL0vnleZ5YK1WeEE9dT4vMxlUTjrhTOGEUGsgYIa7Q2TQHMBEnIohzgntATjJXDwxOZ8iu7G3n0Mh86lVm1DF5thpWKSs4EzOKr7UdkYUorOq32sdjp-KUrU8TUK1Ok1g30YbbLVePMP7kP8hWpf-v_w3-ZvHXpxMA</recordid><startdate>20221107</startdate><enddate>20221107</enddate><creator>Shuvaev, Alexey</creator><creator>Pan, Lei</creator><creator>Tai, Lixuan</creator><creator>Zhang, Peng</creator><creator>Wang, Kang L.</creator><creator>Pimenov, Andrei</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6911-7117</orcidid><orcidid>https://orcid.org/0000-0002-7059-3740</orcidid><orcidid>https://orcid.org/0000-0002-9363-1279</orcidid></search><sort><creationdate>20221107</creationdate><title>Universal rotation gauge via quantum anomalous Hall effect</title><author>Shuvaev, Alexey ; Pan, Lei ; Tai, Lixuan ; Zhang, Peng ; Wang, Kang L. ; Pimenov, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-9e61f1bf4d4799ecf6ebb2060cb591bafb27514657545dafb801d5bf7535f0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Dilution</topic><topic>Dimensionless numbers</topic><topic>Electromagnetism</topic><topic>Experiments</topic><topic>Faraday effect</topic><topic>Light speed</topic><topic>Liquid helium</topic><topic>Magnetic fields</topic><topic>Quantum Hall effect</topic><topic>Quantum wells</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shuvaev, Alexey</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Tai, Lixuan</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Wang, Kang L.</creatorcontrib><creatorcontrib>Pimenov, Andrei</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shuvaev, Alexey</au><au>Pan, Lei</au><au>Tai, Lixuan</au><au>Zhang, Peng</au><au>Wang, Kang L.</au><au>Pimenov, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal rotation gauge via quantum anomalous Hall effect</atitle><jtitle>Applied physics letters</jtitle><date>2022-11-07</date><risdate>2022</risdate><volume>121</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Integer quantum Hall effect allows to gauge the resistance standard up to more than one part in a billion. Combining it with the speed of light, one obtains the fine-structure constant α
≈ 1/137, a dimensionless reference number that can be extracted from a physical experiment. Most exact notion of this value and especially its possible variation on the cosmological time scales is of enormous relevance for fundamental science. In an optical experiment, the fine-structure constant can be directly obtained as purely geometrical angle by measuring the quantized rotation of light polarization in two-dimensional quantum wells. In realistic conditions, high external magnetic fields have to be applied, which strongly affects possible attainable accuracy. An elegant solution of this problem is provided by quantum anomalous Hall effect where a universal quantized value can be obtained in zero magnetic field. Here, we measure the fine-structure constant in a direct optical experiment that requires no material adjustments or technical calibrations. By investigating the Faraday rotation at the interference maxima of the dielectric substrate, the angle close to one α is obtained at liquid helium temperatures without using a dilution refrigerator. Such calibration and parameter-free experiment provides a system-of-unit-independent access to universal quantum of rotation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0105159</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6911-7117</orcidid><orcidid>https://orcid.org/0000-0002-7059-3740</orcidid><orcidid>https://orcid.org/0000-0002-9363-1279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-11, Vol.121 (19) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2732801254 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Dilution Dimensionless numbers Electromagnetism Experiments Faraday effect Light speed Liquid helium Magnetic fields Quantum Hall effect Quantum wells Substrates |
title | Universal rotation gauge via quantum anomalous Hall effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20rotation%20gauge%20via%20quantum%20anomalous%20Hall%20effect&rft.jtitle=Applied%20physics%20letters&rft.au=Shuvaev,%20Alexey&rft.date=2022-11-07&rft.volume=121&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0105159&rft_dat=%3Cproquest_cross%3E2732801254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732801254&rft_id=info:pmid/&rfr_iscdi=true |