Optimization of a thermomechanical treatment of superelastic Ti-Zr-Nb alloys for the production of bar stock for orthopedic implants

Ti-19Zr-14 Nb (at%) shape memory alloy was subjected to low- and high-temperature thermomechanical treatments to fabricate long-length bar stock for the production of load-bearing orthopedic implants. The phase composition, structure, texture, uniaxial tensile and three-point bending fatigue behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-12, Vol.928, p.167143, Article 167143
Hauptverfasser: Sheremetyev, V., Lukashevich, K., Kreitcberg, A., Kudryashova, A., Tsaturyants, M., Galkin, S., Andreev, V., Prokoshkin, S., Brailovski, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 167143
container_title Journal of alloys and compounds
container_volume 928
creator Sheremetyev, V.
Lukashevich, K.
Kreitcberg, A.
Kudryashova, A.
Tsaturyants, M.
Galkin, S.
Andreev, V.
Prokoshkin, S.
Brailovski, V.
description Ti-19Zr-14 Nb (at%) shape memory alloy was subjected to low- and high-temperature thermomechanical treatments to fabricate long-length bar stock for the production of load-bearing orthopedic implants. The phase composition, structure, texture, uniaxial tensile and three-point bending fatigue behavior were studied. Low-temperature thermomechanical treatment (LTMT), combining cold rotary forging and post-deformation annealing at 550 °C led to the formation in the peripheral zone of the bar cross-section of a statically recrystallized fine-grained structure with a relatively strong [001] crystallographic texture and of a mixed statically recrystallized and polygonized substructure, in the central zone of the cross-section. In this state, the alloy exhibited an excellent combination of the static functional and mechanical properties: relatively high strength (UTS=680 MPa), low Young’s modulus (E 
doi_str_mv 10.1016/j.jallcom.2022.167143
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732558637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838822035344</els_id><sourcerecordid>2732558637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-8fcfcd4c427a6e7c23e8e18d24779ef0b6dbe0618488f0508f28b51b398a9eca3</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLg-PgEIeC6Yx5tkq5ExBeIbnTjJqTpDZPaNjXJCLr2w-04unZ1F-d1z0HohJIlJVScdcvO9L0Nw5IRxpZUSFryHbSgSvKiFKLeRQtSs6pQXKl9dJBSRwihNacL9PU4ZT_4T5N9GHFw2OC8gjiEAezKjN6aHucIJg8w5g2e1hNE6E3K3uInX7zE4qHBc374SNiFuJHjKYZ2bf8sGxNxysG-_uAh5lWYoJ3lfph6M-Z0hPac6RMc_95D9Hx99XR5W9w_3txdXtwXlgmZC-Wss21pSyaNAGkZBwVUtayUsgZHGtE2QARVpVKOVEQ5ppqKNrxWpgZr-CE63frO_72tIWXdhXUc50jNJGdVpQSXM6vasmwMKUVweop-MPFDU6I3g-tO_w6uN4Pr7eCz7nyrg7nCu4eok_Uw2rlqBJt1G_w_Dt8Bfo8N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732558637</pqid></control><display><type>article</type><title>Optimization of a thermomechanical treatment of superelastic Ti-Zr-Nb alloys for the production of bar stock for orthopedic implants</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sheremetyev, V. ; Lukashevich, K. ; Kreitcberg, A. ; Kudryashova, A. ; Tsaturyants, M. ; Galkin, S. ; Andreev, V. ; Prokoshkin, S. ; Brailovski, V.</creator><creatorcontrib>Sheremetyev, V. ; Lukashevich, K. ; Kreitcberg, A. ; Kudryashova, A. ; Tsaturyants, M. ; Galkin, S. ; Andreev, V. ; Prokoshkin, S. ; Brailovski, V.</creatorcontrib><description>Ti-19Zr-14 Nb (at%) shape memory alloy was subjected to low- and high-temperature thermomechanical treatments to fabricate long-length bar stock for the production of load-bearing orthopedic implants. The phase composition, structure, texture, uniaxial tensile and three-point bending fatigue behavior were studied. Low-temperature thermomechanical treatment (LTMT), combining cold rotary forging and post-deformation annealing at 550 °C led to the formation in the peripheral zone of the bar cross-section of a statically recrystallized fine-grained structure with a relatively strong [001] crystallographic texture and of a mixed statically recrystallized and polygonized substructure, in the central zone of the cross-section. In this state, the alloy exhibited an excellent combination of the static functional and mechanical properties: relatively high strength (UTS=680 MPa), low Young’s modulus (E &lt; 40 GPa), and high superelastic recovery strain (εrsemax=3.4%). High-temperature thermomechanical treatment (HTMT), consisting in hot rotary forging at 700 °C, led to the formation of a dynamically polygonized substructure with a uniform crystallographic texture close to the [101] direction; this direction corresponding to the maximum theoretical recovery strain limit. As compared to the LTMT bar stock, its HTMT equivalent manifested slighly inferiour static properties but superior fatigue resistance in bending, thus being an optimal candidate for the production of orthopedic implants. •Ti-19Zr-14 Nb alloy was subjected to low- and high-temperature thermomechanical treatments.•Rotary forging at 700 °C forms the uniform crystallographic texture with a maximum intensity close to the [101] direction.•The alloy after hot rotary forging exhibits stable cyclic behavior and superior fatigue resistance under bending conditions.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.167143</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Bending fatigue ; Cold forging ; Cross-sections ; Crystallography ; Deformation ; Fatigue strength ; High temperature ; Low temperature ; Mechanical properties ; Metal fatigue ; Microstructure ; Modulus of elasticity ; Niobium ; Optimization ; Orthopaedic implants ; Orthopedics ; Phase composition ; Recovery ; Recrystallization ; Shape memory alloys ; Substructures (crystalline) ; Superelasticity ; Texture ; Texture Functional properties ; Thermomechanical treatment ; Three-point bending fatigue ; Ti-Zr-Nb shape memory alloy ; Titanium base alloys</subject><ispartof>Journal of alloys and compounds, 2022-12, Vol.928, p.167143, Article 167143</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 20, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-8fcfcd4c427a6e7c23e8e18d24779ef0b6dbe0618488f0508f28b51b398a9eca3</citedby><cites>FETCH-LOGICAL-c267t-8fcfcd4c427a6e7c23e8e18d24779ef0b6dbe0618488f0508f28b51b398a9eca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838822035344$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sheremetyev, V.</creatorcontrib><creatorcontrib>Lukashevich, K.</creatorcontrib><creatorcontrib>Kreitcberg, A.</creatorcontrib><creatorcontrib>Kudryashova, A.</creatorcontrib><creatorcontrib>Tsaturyants, M.</creatorcontrib><creatorcontrib>Galkin, S.</creatorcontrib><creatorcontrib>Andreev, V.</creatorcontrib><creatorcontrib>Prokoshkin, S.</creatorcontrib><creatorcontrib>Brailovski, V.</creatorcontrib><title>Optimization of a thermomechanical treatment of superelastic Ti-Zr-Nb alloys for the production of bar stock for orthopedic implants</title><title>Journal of alloys and compounds</title><description>Ti-19Zr-14 Nb (at%) shape memory alloy was subjected to low- and high-temperature thermomechanical treatments to fabricate long-length bar stock for the production of load-bearing orthopedic implants. The phase composition, structure, texture, uniaxial tensile and three-point bending fatigue behavior were studied. Low-temperature thermomechanical treatment (LTMT), combining cold rotary forging and post-deformation annealing at 550 °C led to the formation in the peripheral zone of the bar cross-section of a statically recrystallized fine-grained structure with a relatively strong [001] crystallographic texture and of a mixed statically recrystallized and polygonized substructure, in the central zone of the cross-section. In this state, the alloy exhibited an excellent combination of the static functional and mechanical properties: relatively high strength (UTS=680 MPa), low Young’s modulus (E &lt; 40 GPa), and high superelastic recovery strain (εrsemax=3.4%). High-temperature thermomechanical treatment (HTMT), consisting in hot rotary forging at 700 °C, led to the formation of a dynamically polygonized substructure with a uniform crystallographic texture close to the [101] direction; this direction corresponding to the maximum theoretical recovery strain limit. As compared to the LTMT bar stock, its HTMT equivalent manifested slighly inferiour static properties but superior fatigue resistance in bending, thus being an optimal candidate for the production of orthopedic implants. •Ti-19Zr-14 Nb alloy was subjected to low- and high-temperature thermomechanical treatments.•Rotary forging at 700 °C forms the uniform crystallographic texture with a maximum intensity close to the [101] direction.•The alloy after hot rotary forging exhibits stable cyclic behavior and superior fatigue resistance under bending conditions.</description><subject>Alloys</subject><subject>Bending fatigue</subject><subject>Cold forging</subject><subject>Cross-sections</subject><subject>Crystallography</subject><subject>Deformation</subject><subject>Fatigue strength</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Niobium</subject><subject>Optimization</subject><subject>Orthopaedic implants</subject><subject>Orthopedics</subject><subject>Phase composition</subject><subject>Recovery</subject><subject>Recrystallization</subject><subject>Shape memory alloys</subject><subject>Substructures (crystalline)</subject><subject>Superelasticity</subject><subject>Texture</subject><subject>Texture Functional properties</subject><subject>Thermomechanical treatment</subject><subject>Three-point bending fatigue</subject><subject>Ti-Zr-Nb shape memory alloy</subject><subject>Titanium base alloys</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLg-PgEIeC6Yx5tkq5ExBeIbnTjJqTpDZPaNjXJCLr2w-04unZ1F-d1z0HohJIlJVScdcvO9L0Nw5IRxpZUSFryHbSgSvKiFKLeRQtSs6pQXKl9dJBSRwihNacL9PU4ZT_4T5N9GHFw2OC8gjiEAezKjN6aHucIJg8w5g2e1hNE6E3K3uInX7zE4qHBc374SNiFuJHjKYZ2bf8sGxNxysG-_uAh5lWYoJ3lfph6M-Z0hPac6RMc_95D9Hx99XR5W9w_3txdXtwXlgmZC-Wss21pSyaNAGkZBwVUtayUsgZHGtE2QARVpVKOVEQ5ppqKNrxWpgZr-CE63frO_72tIWXdhXUc50jNJGdVpQSXM6vasmwMKUVweop-MPFDU6I3g-tO_w6uN4Pr7eCz7nyrg7nCu4eok_Uw2rlqBJt1G_w_Dt8Bfo8N</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Sheremetyev, V.</creator><creator>Lukashevich, K.</creator><creator>Kreitcberg, A.</creator><creator>Kudryashova, A.</creator><creator>Tsaturyants, M.</creator><creator>Galkin, S.</creator><creator>Andreev, V.</creator><creator>Prokoshkin, S.</creator><creator>Brailovski, V.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20221220</creationdate><title>Optimization of a thermomechanical treatment of superelastic Ti-Zr-Nb alloys for the production of bar stock for orthopedic implants</title><author>Sheremetyev, V. ; Lukashevich, K. ; Kreitcberg, A. ; Kudryashova, A. ; Tsaturyants, M. ; Galkin, S. ; Andreev, V. ; Prokoshkin, S. ; Brailovski, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-8fcfcd4c427a6e7c23e8e18d24779ef0b6dbe0618488f0508f28b51b398a9eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Bending fatigue</topic><topic>Cold forging</topic><topic>Cross-sections</topic><topic>Crystallography</topic><topic>Deformation</topic><topic>Fatigue strength</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Niobium</topic><topic>Optimization</topic><topic>Orthopaedic implants</topic><topic>Orthopedics</topic><topic>Phase composition</topic><topic>Recovery</topic><topic>Recrystallization</topic><topic>Shape memory alloys</topic><topic>Substructures (crystalline)</topic><topic>Superelasticity</topic><topic>Texture</topic><topic>Texture Functional properties</topic><topic>Thermomechanical treatment</topic><topic>Three-point bending fatigue</topic><topic>Ti-Zr-Nb shape memory alloy</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheremetyev, V.</creatorcontrib><creatorcontrib>Lukashevich, K.</creatorcontrib><creatorcontrib>Kreitcberg, A.</creatorcontrib><creatorcontrib>Kudryashova, A.</creatorcontrib><creatorcontrib>Tsaturyants, M.</creatorcontrib><creatorcontrib>Galkin, S.</creatorcontrib><creatorcontrib>Andreev, V.</creatorcontrib><creatorcontrib>Prokoshkin, S.</creatorcontrib><creatorcontrib>Brailovski, V.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheremetyev, V.</au><au>Lukashevich, K.</au><au>Kreitcberg, A.</au><au>Kudryashova, A.</au><au>Tsaturyants, M.</au><au>Galkin, S.</au><au>Andreev, V.</au><au>Prokoshkin, S.</au><au>Brailovski, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a thermomechanical treatment of superelastic Ti-Zr-Nb alloys for the production of bar stock for orthopedic implants</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-12-20</date><risdate>2022</risdate><volume>928</volume><spage>167143</spage><pages>167143-</pages><artnum>167143</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Ti-19Zr-14 Nb (at%) shape memory alloy was subjected to low- and high-temperature thermomechanical treatments to fabricate long-length bar stock for the production of load-bearing orthopedic implants. The phase composition, structure, texture, uniaxial tensile and three-point bending fatigue behavior were studied. Low-temperature thermomechanical treatment (LTMT), combining cold rotary forging and post-deformation annealing at 550 °C led to the formation in the peripheral zone of the bar cross-section of a statically recrystallized fine-grained structure with a relatively strong [001] crystallographic texture and of a mixed statically recrystallized and polygonized substructure, in the central zone of the cross-section. In this state, the alloy exhibited an excellent combination of the static functional and mechanical properties: relatively high strength (UTS=680 MPa), low Young’s modulus (E &lt; 40 GPa), and high superelastic recovery strain (εrsemax=3.4%). High-temperature thermomechanical treatment (HTMT), consisting in hot rotary forging at 700 °C, led to the formation of a dynamically polygonized substructure with a uniform crystallographic texture close to the [101] direction; this direction corresponding to the maximum theoretical recovery strain limit. As compared to the LTMT bar stock, its HTMT equivalent manifested slighly inferiour static properties but superior fatigue resistance in bending, thus being an optimal candidate for the production of orthopedic implants. •Ti-19Zr-14 Nb alloy was subjected to low- and high-temperature thermomechanical treatments.•Rotary forging at 700 °C forms the uniform crystallographic texture with a maximum intensity close to the [101] direction.•The alloy after hot rotary forging exhibits stable cyclic behavior and superior fatigue resistance under bending conditions.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2022.167143</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-12, Vol.928, p.167143, Article 167143
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2732558637
source Elsevier ScienceDirect Journals Complete
subjects Alloys
Bending fatigue
Cold forging
Cross-sections
Crystallography
Deformation
Fatigue strength
High temperature
Low temperature
Mechanical properties
Metal fatigue
Microstructure
Modulus of elasticity
Niobium
Optimization
Orthopaedic implants
Orthopedics
Phase composition
Recovery
Recrystallization
Shape memory alloys
Substructures (crystalline)
Superelasticity
Texture
Texture Functional properties
Thermomechanical treatment
Three-point bending fatigue
Ti-Zr-Nb shape memory alloy
Titanium base alloys
title Optimization of a thermomechanical treatment of superelastic Ti-Zr-Nb alloys for the production of bar stock for orthopedic implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%20thermomechanical%20treatment%20of%20superelastic%20Ti-Zr-Nb%20alloys%20for%20the%20production%20of%20bar%20stock%20for%20orthopedic%20implants&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Sheremetyev,%20V.&rft.date=2022-12-20&rft.volume=928&rft.spage=167143&rft.pages=167143-&rft.artnum=167143&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.167143&rft_dat=%3Cproquest_cross%3E2732558637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732558637&rft_id=info:pmid/&rft_els_id=S0925838822035344&rfr_iscdi=true