Radiative Flow of Copper and Aluminum Nanoparticles with Heat Source Phenomenon: Dual Numerical Simulations and Stability Analysis
The thermally developed flow of nanoparticles due to bidirectional moving space has been presented numerically. The additional impact of heat source and sink are also incorporated for enhancing the heat transfer rate. The copper and aluminum nanoparticles are selected for enhancing the thermal diffu...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-07, Vol.2022, p.1-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The thermally developed flow of nanoparticles due to bidirectional moving space has been presented numerically. The additional impact of heat source and sink are also incorporated for enhancing the heat transfer rate. The copper and aluminum nanoparticles are selected for enhancing the thermal diffusion system. The thermal stability of nanoparticles is carefully addressed. The moving surface allows the shrinking and stretching phenomenon. The system of resulting equations with nonlinear nature is numerically swapped via shooting technique with help of MATLAB software. The dual numerical simulations for the thermally radiative problem with external heating phenomenon are being performed. It is noted from results that thermal stability of nanoparticles is more stable in the upper branch of shrinking/stretching surface. The presence of heat source provides extra heat and improves the thermal transportation phenomenon which is more progressive in upper branch. The enhancement in temperature profile due to copper nanoparticles is more stable as compared to aluminum nanoparticles. Moreover, the increasing change in the velocity is resulted upon increasing the rotation constant. The obtained results reflect applications in thermal sciences, heating systems, energy production, solar applications, nuclear reactions, biomedical applications, etc. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2022/1736516 |