Thermal properties of 2D Schrödinger equation with new Morse interacting potential

In this article, we carried out a comprehensive study of the analytical solutions of the 2D Schrödinger equation for a new Morse interacting potential. Using Nikiforov–Uvarov method, the energy eigenvalues and corresponding radial wave functions are obtained analytically. The thermodynamic and therm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2022-11, Vol.76 (11), Article 208
Hauptverfasser: Ikot, A. N., Okorie, U. S., Okon, I. B., Obagboye, L. F., Ahmadov, A. I., Abdullah, H. Y., Qadir, K. W., Udoh, M. E., Onate, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title The European physical journal. D, Atomic, molecular, and optical physics
container_volume 76
creator Ikot, A. N.
Okorie, U. S.
Okon, I. B.
Obagboye, L. F.
Ahmadov, A. I.
Abdullah, H. Y.
Qadir, K. W.
Udoh, M. E.
Onate, C. A.
description In this article, we carried out a comprehensive study of the analytical solutions of the 2D Schrödinger equation for a new Morse interacting potential. Using Nikiforov–Uvarov method, the energy eigenvalues and corresponding radial wave functions are obtained analytically. The thermodynamic and thermomagnetic properties of the system for the new Morse potential such as the partition function of the system, Helmholtz free energy, mean energy, entropy, specific heat capacity, magnetization, magnetic susceptibility, vibrational mean energy, and persistent current are analyzed in a closed form. Also, the numerical bound state solution for the new Morse interacting potential under the influence of AB and magnetic field for fixed magnetic quantum number but with varying principal quantum number for screening parameter is studied. It is shown that the temperature and the maximum quantum number effects play an importance role for the investigation of thermodynamic and thermomagnetic properties of the quantum system. Graphical abstract The partition function is the distribution function that can be used in understanding the quantum behavior of a physical system such as thermodynamic and thermomagnetic properties.
doi_str_mv 10.1140/epjd/s10053-022-00533-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732280679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732280679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-ba8ef7eb4358af0984d79437d8cb681fb4356f828b6b8708ce923351e4bc19263</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBiyxDvVfbGeJyq9UxKJlbTnJhKZqk9R2VHExLsDFcAiCJat50rz3ZvQhdEnJNaWCzKDblDNPCUl5QhhLBhHVEZpQwUUiicqOf7Ukp-jM-w0hhKVCTtBytQa3s1vcubYDF2rwuK0wu8XLYu0-P8q6eQOHYd_bULcNPtRhjRs44OfWecB1E8DZIkQX7toATajt9hydVHbr4eJnTtHr_d1q_pgsXh6e5jeLpGBShCS3GioFueCpthXJtChVJrgqdZFLTathISvNdC5zrYguIGOcpxREXtCMST5FV2Nv_H3fgw9m0_auiScNU5wxTaTKokuNrsK13juoTOfqnXXvhhIzEDQDQTMSNJGg-SZoSEzqMeljYsDw1_9f9AsdTXhS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732280679</pqid></control><display><type>article</type><title>Thermal properties of 2D Schrödinger equation with new Morse interacting potential</title><source>SpringerLink Journals</source><creator>Ikot, A. N. ; Okorie, U. S. ; Okon, I. B. ; Obagboye, L. F. ; Ahmadov, A. I. ; Abdullah, H. Y. ; Qadir, K. W. ; Udoh, M. E. ; Onate, C. A.</creator><creatorcontrib>Ikot, A. N. ; Okorie, U. S. ; Okon, I. B. ; Obagboye, L. F. ; Ahmadov, A. I. ; Abdullah, H. Y. ; Qadir, K. W. ; Udoh, M. E. ; Onate, C. A.</creatorcontrib><description>In this article, we carried out a comprehensive study of the analytical solutions of the 2D Schrödinger equation for a new Morse interacting potential. Using Nikiforov–Uvarov method, the energy eigenvalues and corresponding radial wave functions are obtained analytically. The thermodynamic and thermomagnetic properties of the system for the new Morse potential such as the partition function of the system, Helmholtz free energy, mean energy, entropy, specific heat capacity, magnetization, magnetic susceptibility, vibrational mean energy, and persistent current are analyzed in a closed form. Also, the numerical bound state solution for the new Morse interacting potential under the influence of AB and magnetic field for fixed magnetic quantum number but with varying principal quantum number for screening parameter is studied. It is shown that the temperature and the maximum quantum number effects play an importance role for the investigation of thermodynamic and thermomagnetic properties of the quantum system. Graphical abstract The partition function is the distribution function that can be used in understanding the quantum behavior of a physical system such as thermodynamic and thermomagnetic properties.</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/s10053-022-00533-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Chemical partition ; Distribution functions ; Eigenvalues ; Exact solutions ; Free energy ; Magnetic permeability ; Molecular ; Morse potential ; Optical and Plasma Physics ; Partitions (mathematics) ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Quantum Physics ; Quantum theory ; Regular Article – Atomic Physics ; Schrodinger equation ; Spectroscopy/Spectrometry ; Spintronics ; Thermodynamic properties ; Thermodynamics ; Two dimensional analysis ; Wave functions</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2022-11, Vol.76 (11), Article 208</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-ba8ef7eb4358af0984d79437d8cb681fb4356f828b6b8708ce923351e4bc19263</citedby><cites>FETCH-LOGICAL-c264t-ba8ef7eb4358af0984d79437d8cb681fb4356f828b6b8708ce923351e4bc19263</cites><orcidid>0000-0002-1078-262X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjd/s10053-022-00533-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjd/s10053-022-00533-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ikot, A. N.</creatorcontrib><creatorcontrib>Okorie, U. S.</creatorcontrib><creatorcontrib>Okon, I. B.</creatorcontrib><creatorcontrib>Obagboye, L. F.</creatorcontrib><creatorcontrib>Ahmadov, A. I.</creatorcontrib><creatorcontrib>Abdullah, H. Y.</creatorcontrib><creatorcontrib>Qadir, K. W.</creatorcontrib><creatorcontrib>Udoh, M. E.</creatorcontrib><creatorcontrib>Onate, C. A.</creatorcontrib><title>Thermal properties of 2D Schrödinger equation with new Morse interacting potential</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>In this article, we carried out a comprehensive study of the analytical solutions of the 2D Schrödinger equation for a new Morse interacting potential. Using Nikiforov–Uvarov method, the energy eigenvalues and corresponding radial wave functions are obtained analytically. The thermodynamic and thermomagnetic properties of the system for the new Morse potential such as the partition function of the system, Helmholtz free energy, mean energy, entropy, specific heat capacity, magnetization, magnetic susceptibility, vibrational mean energy, and persistent current are analyzed in a closed form. Also, the numerical bound state solution for the new Morse interacting potential under the influence of AB and magnetic field for fixed magnetic quantum number but with varying principal quantum number for screening parameter is studied. It is shown that the temperature and the maximum quantum number effects play an importance role for the investigation of thermodynamic and thermomagnetic properties of the quantum system. Graphical abstract The partition function is the distribution function that can be used in understanding the quantum behavior of a physical system such as thermodynamic and thermomagnetic properties.</description><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Chemical partition</subject><subject>Distribution functions</subject><subject>Eigenvalues</subject><subject>Exact solutions</subject><subject>Free energy</subject><subject>Magnetic permeability</subject><subject>Molecular</subject><subject>Morse potential</subject><subject>Optical and Plasma Physics</subject><subject>Partitions (mathematics)</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Regular Article – Atomic Physics</subject><subject>Schrodinger equation</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Two dimensional analysis</subject><subject>Wave functions</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwBiyxDvVfbGeJyq9UxKJlbTnJhKZqk9R2VHExLsDFcAiCJat50rz3ZvQhdEnJNaWCzKDblDNPCUl5QhhLBhHVEZpQwUUiicqOf7Ukp-jM-w0hhKVCTtBytQa3s1vcubYDF2rwuK0wu8XLYu0-P8q6eQOHYd_bULcNPtRhjRs44OfWecB1E8DZIkQX7toATajt9hydVHbr4eJnTtHr_d1q_pgsXh6e5jeLpGBShCS3GioFueCpthXJtChVJrgqdZFLTathISvNdC5zrYguIGOcpxREXtCMST5FV2Nv_H3fgw9m0_auiScNU5wxTaTKokuNrsK13juoTOfqnXXvhhIzEDQDQTMSNJGg-SZoSEzqMeljYsDw1_9f9AsdTXhS</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ikot, A. N.</creator><creator>Okorie, U. S.</creator><creator>Okon, I. B.</creator><creator>Obagboye, L. F.</creator><creator>Ahmadov, A. I.</creator><creator>Abdullah, H. Y.</creator><creator>Qadir, K. W.</creator><creator>Udoh, M. E.</creator><creator>Onate, C. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1078-262X</orcidid></search><sort><creationdate>20221101</creationdate><title>Thermal properties of 2D Schrödinger equation with new Morse interacting potential</title><author>Ikot, A. N. ; Okorie, U. S. ; Okon, I. B. ; Obagboye, L. F. ; Ahmadov, A. I. ; Abdullah, H. Y. ; Qadir, K. W. ; Udoh, M. E. ; Onate, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-ba8ef7eb4358af0984d79437d8cb681fb4356f828b6b8708ce923351e4bc19263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Chemical partition</topic><topic>Distribution functions</topic><topic>Eigenvalues</topic><topic>Exact solutions</topic><topic>Free energy</topic><topic>Magnetic permeability</topic><topic>Molecular</topic><topic>Morse potential</topic><topic>Optical and Plasma Physics</topic><topic>Partitions (mathematics)</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Regular Article – Atomic Physics</topic><topic>Schrodinger equation</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Two dimensional analysis</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikot, A. N.</creatorcontrib><creatorcontrib>Okorie, U. S.</creatorcontrib><creatorcontrib>Okon, I. B.</creatorcontrib><creatorcontrib>Obagboye, L. F.</creatorcontrib><creatorcontrib>Ahmadov, A. I.</creatorcontrib><creatorcontrib>Abdullah, H. Y.</creatorcontrib><creatorcontrib>Qadir, K. W.</creatorcontrib><creatorcontrib>Udoh, M. E.</creatorcontrib><creatorcontrib>Onate, C. A.</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikot, A. N.</au><au>Okorie, U. S.</au><au>Okon, I. B.</au><au>Obagboye, L. F.</au><au>Ahmadov, A. I.</au><au>Abdullah, H. Y.</au><au>Qadir, K. W.</au><au>Udoh, M. E.</au><au>Onate, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal properties of 2D Schrödinger equation with new Morse interacting potential</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>76</volume><issue>11</issue><artnum>208</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>In this article, we carried out a comprehensive study of the analytical solutions of the 2D Schrödinger equation for a new Morse interacting potential. Using Nikiforov–Uvarov method, the energy eigenvalues and corresponding radial wave functions are obtained analytically. The thermodynamic and thermomagnetic properties of the system for the new Morse potential such as the partition function of the system, Helmholtz free energy, mean energy, entropy, specific heat capacity, magnetization, magnetic susceptibility, vibrational mean energy, and persistent current are analyzed in a closed form. Also, the numerical bound state solution for the new Morse interacting potential under the influence of AB and magnetic field for fixed magnetic quantum number but with varying principal quantum number for screening parameter is studied. It is shown that the temperature and the maximum quantum number effects play an importance role for the investigation of thermodynamic and thermomagnetic properties of the quantum system. Graphical abstract The partition function is the distribution function that can be used in understanding the quantum behavior of a physical system such as thermodynamic and thermomagnetic properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/s10053-022-00533-0</doi><orcidid>https://orcid.org/0000-0002-1078-262X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-6060
ispartof The European physical journal. D, Atomic, molecular, and optical physics, 2022-11, Vol.76 (11), Article 208
issn 1434-6060
1434-6079
language eng
recordid cdi_proquest_journals_2732280679
source SpringerLink Journals
subjects Applications of Nonlinear Dynamics and Chaos Theory
Atomic
Chemical partition
Distribution functions
Eigenvalues
Exact solutions
Free energy
Magnetic permeability
Molecular
Morse potential
Optical and Plasma Physics
Partitions (mathematics)
Physical Chemistry
Physics
Physics and Astronomy
Quantum Information Technology
Quantum Physics
Quantum theory
Regular Article – Atomic Physics
Schrodinger equation
Spectroscopy/Spectrometry
Spintronics
Thermodynamic properties
Thermodynamics
Two dimensional analysis
Wave functions
title Thermal properties of 2D Schrödinger equation with new Morse interacting potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20properties%20of%202D%20Schr%C3%B6dinger%20equation%20with%20new%20Morse%20interacting%20potential&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Ikot,%20A.%20N.&rft.date=2022-11-01&rft.volume=76&rft.issue=11&rft.artnum=208&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/s10053-022-00533-0&rft_dat=%3Cproquest_cross%3E2732280679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732280679&rft_id=info:pmid/&rfr_iscdi=true