Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves

In our previous paper, we have demonstrated the amorphous-glassy-crystalline-amorphous state phase transition of Li 2 SO 4 crystalline samples at the number of shock pulses of 0, 1, 2, and 3, respectively. In the present work, we extend the study on the abovementioned sequence of phase transition in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2022-12, Vol.28 (12), p.5389-5394
Hauptverfasser: Sivakumar, A., Dhas, S. Sahaya Jude, Sivaprakash, P., Manivannan, M., Kumar, Raju Suresh, Almansour, Abdulrahman I., Moovendaran, K., Arumugam, S., Dhas, S. A. Martin Britto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5394
container_issue 12
container_start_page 5389
container_title Ionics
container_volume 28
creator Sivakumar, A.
Dhas, S. Sahaya Jude
Sivaprakash, P.
Manivannan, M.
Kumar, Raju Suresh
Almansour, Abdulrahman I.
Moovendaran, K.
Arumugam, S.
Dhas, S. A. Martin Britto
description In our previous paper, we have demonstrated the amorphous-glassy-crystalline-amorphous state phase transition of Li 2 SO 4 crystalline samples at the number of shock pulses of 0, 1, 2, and 3, respectively. In the present work, we extend the study on the abovementioned sequence of phase transition in such a way that it is to be examined by the impedance spectroscopy. Based on the observations, the results of the respective spectra well-agree with each other depending on the number of shock pulses. The positional disorder of Li atoms and rotational disorder of SO 4 units behave as observed in the impedance spectroscopy by the impact of shock waves such that the resultant significant changes (several orders of magnitude) are noticed in the ionic- conductivity of the titled sample. The conducting behavior of the titled sample with respect to its state is due to the existence of peddle–wheel and percolation mechanisms.
doi_str_mv 10.1007/s11581-022-04753-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732030550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732030550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4a13d734a1659a1a73db6ae3c4ef0ae18f7f26f9b7a5682edc2dc50f9593b843</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKdfwFPAc_VN0iTtUYY6YeDB3UOaJltm186knfTbm1nBm6eHl-fPCz-EbgncEwD5EAnhBcmA0gxyyVkmz9CMFCKdUsA5mkGZy0wm7xJdxbgDEIJQOUPv66H17QZ3DtvGmj54oxtsurYeTO-Pvh9PVuP7rR_2OA6N073F_mTbGlcjrsdW773BcduZD_yljzZeowunm2hvfnWO1s9P68UyW729vC4eV5lhpOyzXBNWS5ZE8FITLVldCW2Zya0DbUnhpKPClZXUXBTU1obWhoMrecmqImdzdDfNHkL3OdjYq103hDZ9VFQyCgw4h5SiU8qELsZgnToEv9dhVATUiZ2a2KnETv2wUzKV2FSKKdxubPib_qf1DQ1LcqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732030550</pqid></control><display><type>article</type><title>Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves</title><source>Springer Nature - Complete Springer Journals</source><creator>Sivakumar, A. ; Dhas, S. Sahaya Jude ; Sivaprakash, P. ; Manivannan, M. ; Kumar, Raju Suresh ; Almansour, Abdulrahman I. ; Moovendaran, K. ; Arumugam, S. ; Dhas, S. A. Martin Britto</creator><creatorcontrib>Sivakumar, A. ; Dhas, S. Sahaya Jude ; Sivaprakash, P. ; Manivannan, M. ; Kumar, Raju Suresh ; Almansour, Abdulrahman I. ; Moovendaran, K. ; Arumugam, S. ; Dhas, S. A. Martin Britto</creatorcontrib><description>In our previous paper, we have demonstrated the amorphous-glassy-crystalline-amorphous state phase transition of Li 2 SO 4 crystalline samples at the number of shock pulses of 0, 1, 2, and 3, respectively. In the present work, we extend the study on the abovementioned sequence of phase transition in such a way that it is to be examined by the impedance spectroscopy. Based on the observations, the results of the respective spectra well-agree with each other depending on the number of shock pulses. The positional disorder of Li atoms and rotational disorder of SO 4 units behave as observed in the impedance spectroscopy by the impact of shock waves such that the resultant significant changes (several orders of magnitude) are noticed in the ionic- conductivity of the titled sample. The conducting behavior of the titled sample with respect to its state is due to the existence of peddle–wheel and percolation mechanisms.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-022-04753-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic properties ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrical resistivity ; Electrochemistry ; Energy Storage ; Impedance spectroscopy ; Lithium ; Optical and Electronic Materials ; Original Paper ; Percolation ; Phase transitions ; Renewable and Green Energy ; Rotational spectra ; Shock pulses ; Shock waves</subject><ispartof>Ionics, 2022-12, Vol.28 (12), p.5389-5394</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4a13d734a1659a1a73db6ae3c4ef0ae18f7f26f9b7a5682edc2dc50f9593b843</citedby><cites>FETCH-LOGICAL-c319t-4a13d734a1659a1a73db6ae3c4ef0ae18f7f26f9b7a5682edc2dc50f9593b843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-022-04753-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-022-04753-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sivakumar, A.</creatorcontrib><creatorcontrib>Dhas, S. Sahaya Jude</creatorcontrib><creatorcontrib>Sivaprakash, P.</creatorcontrib><creatorcontrib>Manivannan, M.</creatorcontrib><creatorcontrib>Kumar, Raju Suresh</creatorcontrib><creatorcontrib>Almansour, Abdulrahman I.</creatorcontrib><creatorcontrib>Moovendaran, K.</creatorcontrib><creatorcontrib>Arumugam, S.</creatorcontrib><creatorcontrib>Dhas, S. A. Martin Britto</creatorcontrib><title>Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves</title><title>Ionics</title><addtitle>Ionics</addtitle><description>In our previous paper, we have demonstrated the amorphous-glassy-crystalline-amorphous state phase transition of Li 2 SO 4 crystalline samples at the number of shock pulses of 0, 1, 2, and 3, respectively. In the present work, we extend the study on the abovementioned sequence of phase transition in such a way that it is to be examined by the impedance spectroscopy. Based on the observations, the results of the respective spectra well-agree with each other depending on the number of shock pulses. The positional disorder of Li atoms and rotational disorder of SO 4 units behave as observed in the impedance spectroscopy by the impact of shock waves such that the resultant significant changes (several orders of magnitude) are noticed in the ionic- conductivity of the titled sample. The conducting behavior of the titled sample with respect to its state is due to the existence of peddle–wheel and percolation mechanisms.</description><subject>Atomic properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Impedance spectroscopy</subject><subject>Lithium</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Percolation</subject><subject>Phase transitions</subject><subject>Renewable and Green Energy</subject><subject>Rotational spectra</subject><subject>Shock pulses</subject><subject>Shock waves</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYxoMoOKdfwFPAc_VN0iTtUYY6YeDB3UOaJltm186knfTbm1nBm6eHl-fPCz-EbgncEwD5EAnhBcmA0gxyyVkmz9CMFCKdUsA5mkGZy0wm7xJdxbgDEIJQOUPv66H17QZ3DtvGmj54oxtsurYeTO-Pvh9PVuP7rR_2OA6N073F_mTbGlcjrsdW773BcduZD_yljzZeowunm2hvfnWO1s9P68UyW729vC4eV5lhpOyzXBNWS5ZE8FITLVldCW2Zya0DbUnhpKPClZXUXBTU1obWhoMrecmqImdzdDfNHkL3OdjYq103hDZ9VFQyCgw4h5SiU8qELsZgnToEv9dhVATUiZ2a2KnETv2wUzKV2FSKKdxubPib_qf1DQ1LcqM</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sivakumar, A.</creator><creator>Dhas, S. Sahaya Jude</creator><creator>Sivaprakash, P.</creator><creator>Manivannan, M.</creator><creator>Kumar, Raju Suresh</creator><creator>Almansour, Abdulrahman I.</creator><creator>Moovendaran, K.</creator><creator>Arumugam, S.</creator><creator>Dhas, S. A. Martin Britto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves</title><author>Sivakumar, A. ; Dhas, S. Sahaya Jude ; Sivaprakash, P. ; Manivannan, M. ; Kumar, Raju Suresh ; Almansour, Abdulrahman I. ; Moovendaran, K. ; Arumugam, S. ; Dhas, S. A. Martin Britto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4a13d734a1659a1a73db6ae3c4ef0ae18f7f26f9b7a5682edc2dc50f9593b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Impedance spectroscopy</topic><topic>Lithium</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Percolation</topic><topic>Phase transitions</topic><topic>Renewable and Green Energy</topic><topic>Rotational spectra</topic><topic>Shock pulses</topic><topic>Shock waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivakumar, A.</creatorcontrib><creatorcontrib>Dhas, S. Sahaya Jude</creatorcontrib><creatorcontrib>Sivaprakash, P.</creatorcontrib><creatorcontrib>Manivannan, M.</creatorcontrib><creatorcontrib>Kumar, Raju Suresh</creatorcontrib><creatorcontrib>Almansour, Abdulrahman I.</creatorcontrib><creatorcontrib>Moovendaran, K.</creatorcontrib><creatorcontrib>Arumugam, S.</creatorcontrib><creatorcontrib>Dhas, S. A. Martin Britto</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivakumar, A.</au><au>Dhas, S. Sahaya Jude</au><au>Sivaprakash, P.</au><au>Manivannan, M.</au><au>Kumar, Raju Suresh</au><au>Almansour, Abdulrahman I.</au><au>Moovendaran, K.</au><au>Arumugam, S.</au><au>Dhas, S. A. Martin Britto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>28</volume><issue>12</issue><spage>5389</spage><epage>5394</epage><pages>5389-5394</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>In our previous paper, we have demonstrated the amorphous-glassy-crystalline-amorphous state phase transition of Li 2 SO 4 crystalline samples at the number of shock pulses of 0, 1, 2, and 3, respectively. In the present work, we extend the study on the abovementioned sequence of phase transition in such a way that it is to be examined by the impedance spectroscopy. Based on the observations, the results of the respective spectra well-agree with each other depending on the number of shock pulses. The positional disorder of Li atoms and rotational disorder of SO 4 units behave as observed in the impedance spectroscopy by the impact of shock waves such that the resultant significant changes (several orders of magnitude) are noticed in the ionic- conductivity of the titled sample. The conducting behavior of the titled sample with respect to its state is due to the existence of peddle–wheel and percolation mechanisms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-022-04753-7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2022-12, Vol.28 (12), p.5389-5394
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2732030550
source Springer Nature - Complete Springer Journals
subjects Atomic properties
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrical resistivity
Electrochemistry
Energy Storage
Impedance spectroscopy
Lithium
Optical and Electronic Materials
Original Paper
Percolation
Phase transitions
Renewable and Green Energy
Rotational spectra
Shock pulses
Shock waves
title Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20of%20electrical%20conductivity%20of%20lithium%20sulfate%20induced%20by%20dynamic%20shock%20waves&rft.jtitle=Ionics&rft.au=Sivakumar,%20A.&rft.date=2022-12-01&rft.volume=28&rft.issue=12&rft.spage=5389&rft.epage=5394&rft.pages=5389-5394&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-022-04753-7&rft_dat=%3Cproquest_cross%3E2732030550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732030550&rft_id=info:pmid/&rfr_iscdi=true