Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves
In our previous paper, we have demonstrated the amorphous-glassy-crystalline-amorphous state phase transition of Li 2 SO 4 crystalline samples at the number of shock pulses of 0, 1, 2, and 3, respectively. In the present work, we extend the study on the abovementioned sequence of phase transition in...
Gespeichert in:
Veröffentlicht in: | Ionics 2022-12, Vol.28 (12), p.5389-5394 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5394 |
---|---|
container_issue | 12 |
container_start_page | 5389 |
container_title | Ionics |
container_volume | 28 |
creator | Sivakumar, A. Dhas, S. Sahaya Jude Sivaprakash, P. Manivannan, M. Kumar, Raju Suresh Almansour, Abdulrahman I. Moovendaran, K. Arumugam, S. Dhas, S. A. Martin Britto |
description | In our previous paper, we have demonstrated the amorphous-glassy-crystalline-amorphous state phase transition of Li
2
SO
4
crystalline samples at the number of shock pulses of 0, 1, 2, and 3, respectively. In the present work, we extend the study on the abovementioned sequence of phase transition in such a way that it is to be examined by the impedance spectroscopy. Based on the observations, the results of the respective spectra well-agree with each other depending on the number of shock pulses. The positional disorder of Li atoms and rotational disorder of SO
4
units behave as observed in the impedance spectroscopy by the impact of shock waves such that the resultant significant changes (several orders of magnitude) are noticed in the ionic- conductivity of the titled sample. The conducting behavior of the titled sample with respect to its state is due to the existence of peddle–wheel and percolation mechanisms. |
doi_str_mv | 10.1007/s11581-022-04753-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732030550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732030550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4a13d734a1659a1a73db6ae3c4ef0ae18f7f26f9b7a5682edc2dc50f9593b843</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKdfwFPAc_VN0iTtUYY6YeDB3UOaJltm186knfTbm1nBm6eHl-fPCz-EbgncEwD5EAnhBcmA0gxyyVkmz9CMFCKdUsA5mkGZy0wm7xJdxbgDEIJQOUPv66H17QZ3DtvGmj54oxtsurYeTO-Pvh9PVuP7rR_2OA6N073F_mTbGlcjrsdW773BcduZD_yljzZeowunm2hvfnWO1s9P68UyW729vC4eV5lhpOyzXBNWS5ZE8FITLVldCW2Zya0DbUnhpKPClZXUXBTU1obWhoMrecmqImdzdDfNHkL3OdjYq103hDZ9VFQyCgw4h5SiU8qELsZgnToEv9dhVATUiZ2a2KnETv2wUzKV2FSKKdxubPib_qf1DQ1LcqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732030550</pqid></control><display><type>article</type><title>Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves</title><source>Springer Nature - Complete Springer Journals</source><creator>Sivakumar, A. ; Dhas, S. Sahaya Jude ; Sivaprakash, P. ; Manivannan, M. ; Kumar, Raju Suresh ; Almansour, Abdulrahman I. ; Moovendaran, K. ; Arumugam, S. ; Dhas, S. A. Martin Britto</creator><creatorcontrib>Sivakumar, A. ; Dhas, S. Sahaya Jude ; Sivaprakash, P. ; Manivannan, M. ; Kumar, Raju Suresh ; Almansour, Abdulrahman I. ; Moovendaran, K. ; Arumugam, S. ; Dhas, S. A. Martin Britto</creatorcontrib><description>In our previous paper, we have demonstrated the amorphous-glassy-crystalline-amorphous state phase transition of Li
2
SO
4
crystalline samples at the number of shock pulses of 0, 1, 2, and 3, respectively. In the present work, we extend the study on the abovementioned sequence of phase transition in such a way that it is to be examined by the impedance spectroscopy. Based on the observations, the results of the respective spectra well-agree with each other depending on the number of shock pulses. The positional disorder of Li atoms and rotational disorder of SO
4
units behave as observed in the impedance spectroscopy by the impact of shock waves such that the resultant significant changes (several orders of magnitude) are noticed in the ionic- conductivity of the titled sample. The conducting behavior of the titled sample with respect to its state is due to the existence of peddle–wheel and percolation mechanisms.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-022-04753-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic properties ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrical resistivity ; Electrochemistry ; Energy Storage ; Impedance spectroscopy ; Lithium ; Optical and Electronic Materials ; Original Paper ; Percolation ; Phase transitions ; Renewable and Green Energy ; Rotational spectra ; Shock pulses ; Shock waves</subject><ispartof>Ionics, 2022-12, Vol.28 (12), p.5389-5394</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4a13d734a1659a1a73db6ae3c4ef0ae18f7f26f9b7a5682edc2dc50f9593b843</citedby><cites>FETCH-LOGICAL-c319t-4a13d734a1659a1a73db6ae3c4ef0ae18f7f26f9b7a5682edc2dc50f9593b843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-022-04753-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-022-04753-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sivakumar, A.</creatorcontrib><creatorcontrib>Dhas, S. Sahaya Jude</creatorcontrib><creatorcontrib>Sivaprakash, P.</creatorcontrib><creatorcontrib>Manivannan, M.</creatorcontrib><creatorcontrib>Kumar, Raju Suresh</creatorcontrib><creatorcontrib>Almansour, Abdulrahman I.</creatorcontrib><creatorcontrib>Moovendaran, K.</creatorcontrib><creatorcontrib>Arumugam, S.</creatorcontrib><creatorcontrib>Dhas, S. A. Martin Britto</creatorcontrib><title>Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves</title><title>Ionics</title><addtitle>Ionics</addtitle><description>In our previous paper, we have demonstrated the amorphous-glassy-crystalline-amorphous state phase transition of Li
2
SO
4
crystalline samples at the number of shock pulses of 0, 1, 2, and 3, respectively. In the present work, we extend the study on the abovementioned sequence of phase transition in such a way that it is to be examined by the impedance spectroscopy. Based on the observations, the results of the respective spectra well-agree with each other depending on the number of shock pulses. The positional disorder of Li atoms and rotational disorder of SO
4
units behave as observed in the impedance spectroscopy by the impact of shock waves such that the resultant significant changes (several orders of magnitude) are noticed in the ionic- conductivity of the titled sample. The conducting behavior of the titled sample with respect to its state is due to the existence of peddle–wheel and percolation mechanisms.</description><subject>Atomic properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Impedance spectroscopy</subject><subject>Lithium</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Percolation</subject><subject>Phase transitions</subject><subject>Renewable and Green Energy</subject><subject>Rotational spectra</subject><subject>Shock pulses</subject><subject>Shock waves</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYxoMoOKdfwFPAc_VN0iTtUYY6YeDB3UOaJltm186knfTbm1nBm6eHl-fPCz-EbgncEwD5EAnhBcmA0gxyyVkmz9CMFCKdUsA5mkGZy0wm7xJdxbgDEIJQOUPv66H17QZ3DtvGmj54oxtsurYeTO-Pvh9PVuP7rR_2OA6N073F_mTbGlcjrsdW773BcduZD_yljzZeowunm2hvfnWO1s9P68UyW729vC4eV5lhpOyzXBNWS5ZE8FITLVldCW2Zya0DbUnhpKPClZXUXBTU1obWhoMrecmqImdzdDfNHkL3OdjYq103hDZ9VFQyCgw4h5SiU8qELsZgnToEv9dhVATUiZ2a2KnETv2wUzKV2FSKKdxubPib_qf1DQ1LcqM</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sivakumar, A.</creator><creator>Dhas, S. Sahaya Jude</creator><creator>Sivaprakash, P.</creator><creator>Manivannan, M.</creator><creator>Kumar, Raju Suresh</creator><creator>Almansour, Abdulrahman I.</creator><creator>Moovendaran, K.</creator><creator>Arumugam, S.</creator><creator>Dhas, S. A. Martin Britto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves</title><author>Sivakumar, A. ; Dhas, S. Sahaya Jude ; Sivaprakash, P. ; Manivannan, M. ; Kumar, Raju Suresh ; Almansour, Abdulrahman I. ; Moovendaran, K. ; Arumugam, S. ; Dhas, S. A. Martin Britto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4a13d734a1659a1a73db6ae3c4ef0ae18f7f26f9b7a5682edc2dc50f9593b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Impedance spectroscopy</topic><topic>Lithium</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Percolation</topic><topic>Phase transitions</topic><topic>Renewable and Green Energy</topic><topic>Rotational spectra</topic><topic>Shock pulses</topic><topic>Shock waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivakumar, A.</creatorcontrib><creatorcontrib>Dhas, S. Sahaya Jude</creatorcontrib><creatorcontrib>Sivaprakash, P.</creatorcontrib><creatorcontrib>Manivannan, M.</creatorcontrib><creatorcontrib>Kumar, Raju Suresh</creatorcontrib><creatorcontrib>Almansour, Abdulrahman I.</creatorcontrib><creatorcontrib>Moovendaran, K.</creatorcontrib><creatorcontrib>Arumugam, S.</creatorcontrib><creatorcontrib>Dhas, S. A. Martin Britto</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivakumar, A.</au><au>Dhas, S. Sahaya Jude</au><au>Sivaprakash, P.</au><au>Manivannan, M.</au><au>Kumar, Raju Suresh</au><au>Almansour, Abdulrahman I.</au><au>Moovendaran, K.</au><au>Arumugam, S.</au><au>Dhas, S. A. Martin Britto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>28</volume><issue>12</issue><spage>5389</spage><epage>5394</epage><pages>5389-5394</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>In our previous paper, we have demonstrated the amorphous-glassy-crystalline-amorphous state phase transition of Li
2
SO
4
crystalline samples at the number of shock pulses of 0, 1, 2, and 3, respectively. In the present work, we extend the study on the abovementioned sequence of phase transition in such a way that it is to be examined by the impedance spectroscopy. Based on the observations, the results of the respective spectra well-agree with each other depending on the number of shock pulses. The positional disorder of Li atoms and rotational disorder of SO
4
units behave as observed in the impedance spectroscopy by the impact of shock waves such that the resultant significant changes (several orders of magnitude) are noticed in the ionic- conductivity of the titled sample. The conducting behavior of the titled sample with respect to its state is due to the existence of peddle–wheel and percolation mechanisms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-022-04753-7</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2022-12, Vol.28 (12), p.5389-5394 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2732030550 |
source | Springer Nature - Complete Springer Journals |
subjects | Atomic properties Chemistry Chemistry and Materials Science Condensed Matter Physics Electrical resistivity Electrochemistry Energy Storage Impedance spectroscopy Lithium Optical and Electronic Materials Original Paper Percolation Phase transitions Renewable and Green Energy Rotational spectra Shock pulses Shock waves |
title | Tuning of electrical conductivity of lithium sulfate induced by dynamic shock waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20of%20electrical%20conductivity%20of%20lithium%20sulfate%20induced%20by%20dynamic%20shock%20waves&rft.jtitle=Ionics&rft.au=Sivakumar,%20A.&rft.date=2022-12-01&rft.volume=28&rft.issue=12&rft.spage=5389&rft.epage=5394&rft.pages=5389-5394&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-022-04753-7&rft_dat=%3Cproquest_cross%3E2732030550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732030550&rft_id=info:pmid/&rfr_iscdi=true |