Dust Temperature Profiles in Dense Cores Related to the High-Mass Star-Forming Regions

We obtained continuum maps at a wavelength of 350 μm for eight gas–dust clouds from the southern hemisphere using the APEX-12m telescope. The clouds are related to the regions of the formation of high-mass stars and star clusters and have dense cores. The core sizes estimated at half the maximum int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiophysics and quantum electronics 2022-05, Vol.64 (12), p.857-872
1. Verfasser: Pirogov, L. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtained continuum maps at a wavelength of 350 μm for eight gas–dust clouds from the southern hemisphere using the APEX-12m telescope. The clouds are related to the regions of the formation of high-mass stars and star clusters and have dense cores. The core sizes estimated at half the maximum intensity at a wavelength of 350 μm are 0.1–0.2 pc. The core masses and gas mean densities lie in the ranges 20–1000 M ʘ and (0.3–7.3)·106 cm −3 , respectively. A comparison of the obtained data at a wavelength of 350 μm with observation data of the same objects at a wavelength of 1.2 mm was carried out. From the intensity ratios at two wavelengths reduced to one angular resolution, the spatial distributions of the average dust temperature on the line of sight are calculated. Dust temperature maps in most objects correlate with intensity distributions at a wavelength of 350 μm. A decrease in the dust temperature with distance from the center is detected in most cores. The obtained dust temperature profiles in most cases turned out to be close to linear ones. Using a simple spherically symmetric model of a dust cloud, it is shown that temperature profiles close to the observed ones can be obtained under the assumption of the presence of an internal source by varying the density profile parameters and specifying a powerlaw index β of the dust emissivity dependence on frequency as a constant. It is shown that the dust temperature estimates strongly depend on the chosen value of β. It is considered how possible variations of β in the cloud can affect the results obtained.
ISSN:0033-8443
1573-9120
DOI:10.1007/s11141-022-10184-1