Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems
Cyber-physical systems (CPSs) is a security real-time embedded system. CPS integrates the information sensed by the current physical sensors, through high-speed real-time transmission, and then carries out powerful information processing to effectively interact and integrate the physical and the inf...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-11, Vol.9 (22), p.22123-22132 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22132 |
---|---|
container_issue | 22 |
container_start_page | 22123 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Liang, Wei Xie, Songyou Cai, Jiahong Xu, Jianbo Hu, Yupeng Xu, Yang Qiu, Meikang |
description | Cyber-physical systems (CPSs) is a security real-time embedded system. CPS integrates the information sensed by the current physical sensors, through high-speed real-time transmission, and then carries out powerful information processing to effectively interact and integrate the physical and the information worlds. With the aim to improve the quality of service, optimize the existing physical space, and increase security, collaborative filtering algorithms have also been widely used in various recommendation models for Internet of Things (IoT) services. However, general collaborative filtering algorithms cannot capture complex interactive information in the sparse Mashup-Web service call matrix, which leads to lower recommendation performance. Based on the artificial intelligence technology, this study proposes a recommendation algorithm for a security collaborative filtering service that integrates content similarity. A security collaborative filtering module is used to capture the complex interaction information between Mashup and Web services. By applying the content similarity module to extract the semantic similarity information between the Mashup and Web services, the two modules are seamlessly integrated into a deep neural network to accurately and quickly predict the rating information of Mashup for the Web services. Real data set on the intelligent CPS is captured and then compared with mainstream service recommendation algorithms. Experimental results show that the proposed algorithm not only efficiently completes the Web service recommendation task under the premise of sparse data but also shows better accuracy, effectivity, and privacy. Thus, the proposed method is highly suitable for the application of intelligence CPS. |
doi_str_mv | 10.1109/JIOT.2021.3086845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2731857278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9447762</ieee_id><sourcerecordid>2731857278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-464962d2d078f5f21f0705094a5874ac8b812938f9b0e1329255e4f2ccf9e4d73</originalsourceid><addsrcrecordid>eNpNkMFOAjEQhjdGEwnyAMZLE89g2-1u26NBUQwRI3jeLGUKxd0ttgWziQ9vCcR4mjl8__yTL0muCR4QguXdy3g6H1BMySDFIhcsO0s6NKW8z_Kcnv_bL5Oe9xuMcYxlROad5OcBYIteYefKKo7wbd0nmoHaORNaNLRVVS6sK4PZAxqZKoAzzQrN1BpqQNq6yLq9UYDeQdm6hmYZWdsg06BxE6CqzAqagIbtAlz_bd16o2LRrPUBan-VXOiy8tA7zW7yMXqcD5_7k-nTeHg_6Ssq0xA_ZzKnS7rEXOhMU6IxxxmWrMwEZ6USC0EiKLRcYCAplTTLgGmqlJbAljztJrfHu1tnv3bgQ7GxO9fEyoLylIiMUy4iRY6UctZ7B7rYOlOXri0ILg6ei4Pn4uC5OHmOmZtjxgDAHy8Z4zyn6S8DDXoX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731857278</pqid></control><display><type>article</type><title>Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Wei ; Xie, Songyou ; Cai, Jiahong ; Xu, Jianbo ; Hu, Yupeng ; Xu, Yang ; Qiu, Meikang</creator><creatorcontrib>Liang, Wei ; Xie, Songyou ; Cai, Jiahong ; Xu, Jianbo ; Hu, Yupeng ; Xu, Yang ; Qiu, Meikang</creatorcontrib><description>Cyber-physical systems (CPSs) is a security real-time embedded system. CPS integrates the information sensed by the current physical sensors, through high-speed real-time transmission, and then carries out powerful information processing to effectively interact and integrate the physical and the information worlds. With the aim to improve the quality of service, optimize the existing physical space, and increase security, collaborative filtering algorithms have also been widely used in various recommendation models for Internet of Things (IoT) services. However, general collaborative filtering algorithms cannot capture complex interactive information in the sparse Mashup-Web service call matrix, which leads to lower recommendation performance. Based on the artificial intelligence technology, this study proposes a recommendation algorithm for a security collaborative filtering service that integrates content similarity. A security collaborative filtering module is used to capture the complex interaction information between Mashup and Web services. By applying the content similarity module to extract the semantic similarity information between the Mashup and Web services, the two modules are seamlessly integrated into a deep neural network to accurately and quickly predict the rating information of Mashup for the Web services. Real data set on the intelligent CPS is captured and then compared with mainstream service recommendation algorithms. Experimental results show that the proposed algorithm not only efficiently completes the Web service recommendation task under the premise of sparse data but also shows better accuracy, effectivity, and privacy. Thus, the proposed method is highly suitable for the application of intelligence CPS.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3086845</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Collaboration ; Collaborative filtering ; Cyber-physical systems ; cyber–physical system (CPS) ; Data processing ; deep neural network ; Embedded systems ; Filtration ; Internet of Things ; Internet service providers ; Mashup ; Mashups ; Modules ; Neural networks ; Prediction algorithms ; Privacy ; Real time ; Security ; Semantics ; Similarity ; Task analysis ; Web service recommendation ; Web services</subject><ispartof>IEEE internet of things journal, 2022-11, Vol.9 (22), p.22123-22132</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-464962d2d078f5f21f0705094a5874ac8b812938f9b0e1329255e4f2ccf9e4d73</citedby><cites>FETCH-LOGICAL-c293t-464962d2d078f5f21f0705094a5874ac8b812938f9b0e1329255e4f2ccf9e4d73</cites><orcidid>0000-0002-3194-8369 ; 0000-0002-5074-1363 ; 0000-0002-7358-7426 ; 0000-0002-1004-0140 ; 0000-0002-1421-8022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9447762$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9447762$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Xie, Songyou</creatorcontrib><creatorcontrib>Cai, Jiahong</creatorcontrib><creatorcontrib>Xu, Jianbo</creatorcontrib><creatorcontrib>Hu, Yupeng</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Qiu, Meikang</creatorcontrib><title>Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Cyber-physical systems (CPSs) is a security real-time embedded system. CPS integrates the information sensed by the current physical sensors, through high-speed real-time transmission, and then carries out powerful information processing to effectively interact and integrate the physical and the information worlds. With the aim to improve the quality of service, optimize the existing physical space, and increase security, collaborative filtering algorithms have also been widely used in various recommendation models for Internet of Things (IoT) services. However, general collaborative filtering algorithms cannot capture complex interactive information in the sparse Mashup-Web service call matrix, which leads to lower recommendation performance. Based on the artificial intelligence technology, this study proposes a recommendation algorithm for a security collaborative filtering service that integrates content similarity. A security collaborative filtering module is used to capture the complex interaction information between Mashup and Web services. By applying the content similarity module to extract the semantic similarity information between the Mashup and Web services, the two modules are seamlessly integrated into a deep neural network to accurately and quickly predict the rating information of Mashup for the Web services. Real data set on the intelligent CPS is captured and then compared with mainstream service recommendation algorithms. Experimental results show that the proposed algorithm not only efficiently completes the Web service recommendation task under the premise of sparse data but also shows better accuracy, effectivity, and privacy. Thus, the proposed method is highly suitable for the application of intelligence CPS.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Collaboration</subject><subject>Collaborative filtering</subject><subject>Cyber-physical systems</subject><subject>cyber–physical system (CPS)</subject><subject>Data processing</subject><subject>deep neural network</subject><subject>Embedded systems</subject><subject>Filtration</subject><subject>Internet of Things</subject><subject>Internet service providers</subject><subject>Mashup</subject><subject>Mashups</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Prediction algorithms</subject><subject>Privacy</subject><subject>Real time</subject><subject>Security</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Task analysis</subject><subject>Web service recommendation</subject><subject>Web services</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOAjEQhjdGEwnyAMZLE89g2-1u26NBUQwRI3jeLGUKxd0ttgWziQ9vCcR4mjl8__yTL0muCR4QguXdy3g6H1BMySDFIhcsO0s6NKW8z_Kcnv_bL5Oe9xuMcYxlROad5OcBYIteYefKKo7wbd0nmoHaORNaNLRVVS6sK4PZAxqZKoAzzQrN1BpqQNq6yLq9UYDeQdm6hmYZWdsg06BxE6CqzAqagIbtAlz_bd16o2LRrPUBan-VXOiy8tA7zW7yMXqcD5_7k-nTeHg_6Ssq0xA_ZzKnS7rEXOhMU6IxxxmWrMwEZ6USC0EiKLRcYCAplTTLgGmqlJbAljztJrfHu1tnv3bgQ7GxO9fEyoLylIiMUy4iRY6UctZ7B7rYOlOXri0ILg6ei4Pn4uC5OHmOmZtjxgDAHy8Z4zyn6S8DDXoX</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Liang, Wei</creator><creator>Xie, Songyou</creator><creator>Cai, Jiahong</creator><creator>Xu, Jianbo</creator><creator>Hu, Yupeng</creator><creator>Xu, Yang</creator><creator>Qiu, Meikang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3194-8369</orcidid><orcidid>https://orcid.org/0000-0002-5074-1363</orcidid><orcidid>https://orcid.org/0000-0002-7358-7426</orcidid><orcidid>https://orcid.org/0000-0002-1004-0140</orcidid><orcidid>https://orcid.org/0000-0002-1421-8022</orcidid></search><sort><creationdate>20221115</creationdate><title>Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems</title><author>Liang, Wei ; Xie, Songyou ; Cai, Jiahong ; Xu, Jianbo ; Hu, Yupeng ; Xu, Yang ; Qiu, Meikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-464962d2d078f5f21f0705094a5874ac8b812938f9b0e1329255e4f2ccf9e4d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Collaboration</topic><topic>Collaborative filtering</topic><topic>Cyber-physical systems</topic><topic>cyber–physical system (CPS)</topic><topic>Data processing</topic><topic>deep neural network</topic><topic>Embedded systems</topic><topic>Filtration</topic><topic>Internet of Things</topic><topic>Internet service providers</topic><topic>Mashup</topic><topic>Mashups</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Prediction algorithms</topic><topic>Privacy</topic><topic>Real time</topic><topic>Security</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Task analysis</topic><topic>Web service recommendation</topic><topic>Web services</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Xie, Songyou</creatorcontrib><creatorcontrib>Cai, Jiahong</creatorcontrib><creatorcontrib>Xu, Jianbo</creatorcontrib><creatorcontrib>Hu, Yupeng</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Qiu, Meikang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Wei</au><au>Xie, Songyou</au><au>Cai, Jiahong</au><au>Xu, Jianbo</au><au>Hu, Yupeng</au><au>Xu, Yang</au><au>Qiu, Meikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-11-15</date><risdate>2022</risdate><volume>9</volume><issue>22</issue><spage>22123</spage><epage>22132</epage><pages>22123-22132</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Cyber-physical systems (CPSs) is a security real-time embedded system. CPS integrates the information sensed by the current physical sensors, through high-speed real-time transmission, and then carries out powerful information processing to effectively interact and integrate the physical and the information worlds. With the aim to improve the quality of service, optimize the existing physical space, and increase security, collaborative filtering algorithms have also been widely used in various recommendation models for Internet of Things (IoT) services. However, general collaborative filtering algorithms cannot capture complex interactive information in the sparse Mashup-Web service call matrix, which leads to lower recommendation performance. Based on the artificial intelligence technology, this study proposes a recommendation algorithm for a security collaborative filtering service that integrates content similarity. A security collaborative filtering module is used to capture the complex interaction information between Mashup and Web services. By applying the content similarity module to extract the semantic similarity information between the Mashup and Web services, the two modules are seamlessly integrated into a deep neural network to accurately and quickly predict the rating information of Mashup for the Web services. Real data set on the intelligent CPS is captured and then compared with mainstream service recommendation algorithms. Experimental results show that the proposed algorithm not only efficiently completes the Web service recommendation task under the premise of sparse data but also shows better accuracy, effectivity, and privacy. Thus, the proposed method is highly suitable for the application of intelligence CPS.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3086845</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3194-8369</orcidid><orcidid>https://orcid.org/0000-0002-5074-1363</orcidid><orcidid>https://orcid.org/0000-0002-7358-7426</orcidid><orcidid>https://orcid.org/0000-0002-1004-0140</orcidid><orcidid>https://orcid.org/0000-0002-1421-8022</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-11, Vol.9 (22), p.22123-22132 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2731857278 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial intelligence Artificial neural networks Collaboration Collaborative filtering Cyber-physical systems cyber–physical system (CPS) Data processing deep neural network Embedded systems Filtration Internet of Things Internet service providers Mashup Mashups Modules Neural networks Prediction algorithms Privacy Real time Security Semantics Similarity Task analysis Web service recommendation Web services |
title | Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20Security%20Collaborative%20Filtering%20Scheme%20for%20Service%20Recommendation%20in%20Intelligent%20Cyber-Physical%20Systems&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liang,%20Wei&rft.date=2022-11-15&rft.volume=9&rft.issue=22&rft.spage=22123&rft.epage=22132&rft.pages=22123-22132&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3086845&rft_dat=%3Cproquest_RIE%3E2731857278%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731857278&rft_id=info:pmid/&rft_ieee_id=9447762&rfr_iscdi=true |