Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems

Cyber-physical systems (CPSs) is a security real-time embedded system. CPS integrates the information sensed by the current physical sensors, through high-speed real-time transmission, and then carries out powerful information processing to effectively interact and integrate the physical and the inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-11, Vol.9 (22), p.22123-22132
Hauptverfasser: Liang, Wei, Xie, Songyou, Cai, Jiahong, Xu, Jianbo, Hu, Yupeng, Xu, Yang, Qiu, Meikang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22132
container_issue 22
container_start_page 22123
container_title IEEE internet of things journal
container_volume 9
creator Liang, Wei
Xie, Songyou
Cai, Jiahong
Xu, Jianbo
Hu, Yupeng
Xu, Yang
Qiu, Meikang
description Cyber-physical systems (CPSs) is a security real-time embedded system. CPS integrates the information sensed by the current physical sensors, through high-speed real-time transmission, and then carries out powerful information processing to effectively interact and integrate the physical and the information worlds. With the aim to improve the quality of service, optimize the existing physical space, and increase security, collaborative filtering algorithms have also been widely used in various recommendation models for Internet of Things (IoT) services. However, general collaborative filtering algorithms cannot capture complex interactive information in the sparse Mashup-Web service call matrix, which leads to lower recommendation performance. Based on the artificial intelligence technology, this study proposes a recommendation algorithm for a security collaborative filtering service that integrates content similarity. A security collaborative filtering module is used to capture the complex interaction information between Mashup and Web services. By applying the content similarity module to extract the semantic similarity information between the Mashup and Web services, the two modules are seamlessly integrated into a deep neural network to accurately and quickly predict the rating information of Mashup for the Web services. Real data set on the intelligent CPS is captured and then compared with mainstream service recommendation algorithms. Experimental results show that the proposed algorithm not only efficiently completes the Web service recommendation task under the premise of sparse data but also shows better accuracy, effectivity, and privacy. Thus, the proposed method is highly suitable for the application of intelligence CPS.
doi_str_mv 10.1109/JIOT.2021.3086845
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2731857278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9447762</ieee_id><sourcerecordid>2731857278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-464962d2d078f5f21f0705094a5874ac8b812938f9b0e1329255e4f2ccf9e4d73</originalsourceid><addsrcrecordid>eNpNkMFOAjEQhjdGEwnyAMZLE89g2-1u26NBUQwRI3jeLGUKxd0ttgWziQ9vCcR4mjl8__yTL0muCR4QguXdy3g6H1BMySDFIhcsO0s6NKW8z_Kcnv_bL5Oe9xuMcYxlROad5OcBYIteYefKKo7wbd0nmoHaORNaNLRVVS6sK4PZAxqZKoAzzQrN1BpqQNq6yLq9UYDeQdm6hmYZWdsg06BxE6CqzAqagIbtAlz_bd16o2LRrPUBan-VXOiy8tA7zW7yMXqcD5_7k-nTeHg_6Ssq0xA_ZzKnS7rEXOhMU6IxxxmWrMwEZ6USC0EiKLRcYCAplTTLgGmqlJbAljztJrfHu1tnv3bgQ7GxO9fEyoLylIiMUy4iRY6UctZ7B7rYOlOXri0ILg6ei4Pn4uC5OHmOmZtjxgDAHy8Z4zyn6S8DDXoX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731857278</pqid></control><display><type>article</type><title>Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Wei ; Xie, Songyou ; Cai, Jiahong ; Xu, Jianbo ; Hu, Yupeng ; Xu, Yang ; Qiu, Meikang</creator><creatorcontrib>Liang, Wei ; Xie, Songyou ; Cai, Jiahong ; Xu, Jianbo ; Hu, Yupeng ; Xu, Yang ; Qiu, Meikang</creatorcontrib><description>Cyber-physical systems (CPSs) is a security real-time embedded system. CPS integrates the information sensed by the current physical sensors, through high-speed real-time transmission, and then carries out powerful information processing to effectively interact and integrate the physical and the information worlds. With the aim to improve the quality of service, optimize the existing physical space, and increase security, collaborative filtering algorithms have also been widely used in various recommendation models for Internet of Things (IoT) services. However, general collaborative filtering algorithms cannot capture complex interactive information in the sparse Mashup-Web service call matrix, which leads to lower recommendation performance. Based on the artificial intelligence technology, this study proposes a recommendation algorithm for a security collaborative filtering service that integrates content similarity. A security collaborative filtering module is used to capture the complex interaction information between Mashup and Web services. By applying the content similarity module to extract the semantic similarity information between the Mashup and Web services, the two modules are seamlessly integrated into a deep neural network to accurately and quickly predict the rating information of Mashup for the Web services. Real data set on the intelligent CPS is captured and then compared with mainstream service recommendation algorithms. Experimental results show that the proposed algorithm not only efficiently completes the Web service recommendation task under the premise of sparse data but also shows better accuracy, effectivity, and privacy. Thus, the proposed method is highly suitable for the application of intelligence CPS.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3086845</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Collaboration ; Collaborative filtering ; Cyber-physical systems ; cyber–physical system (CPS) ; Data processing ; deep neural network ; Embedded systems ; Filtration ; Internet of Things ; Internet service providers ; Mashup ; Mashups ; Modules ; Neural networks ; Prediction algorithms ; Privacy ; Real time ; Security ; Semantics ; Similarity ; Task analysis ; Web service recommendation ; Web services</subject><ispartof>IEEE internet of things journal, 2022-11, Vol.9 (22), p.22123-22132</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-464962d2d078f5f21f0705094a5874ac8b812938f9b0e1329255e4f2ccf9e4d73</citedby><cites>FETCH-LOGICAL-c293t-464962d2d078f5f21f0705094a5874ac8b812938f9b0e1329255e4f2ccf9e4d73</cites><orcidid>0000-0002-3194-8369 ; 0000-0002-5074-1363 ; 0000-0002-7358-7426 ; 0000-0002-1004-0140 ; 0000-0002-1421-8022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9447762$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9447762$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Xie, Songyou</creatorcontrib><creatorcontrib>Cai, Jiahong</creatorcontrib><creatorcontrib>Xu, Jianbo</creatorcontrib><creatorcontrib>Hu, Yupeng</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Qiu, Meikang</creatorcontrib><title>Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Cyber-physical systems (CPSs) is a security real-time embedded system. CPS integrates the information sensed by the current physical sensors, through high-speed real-time transmission, and then carries out powerful information processing to effectively interact and integrate the physical and the information worlds. With the aim to improve the quality of service, optimize the existing physical space, and increase security, collaborative filtering algorithms have also been widely used in various recommendation models for Internet of Things (IoT) services. However, general collaborative filtering algorithms cannot capture complex interactive information in the sparse Mashup-Web service call matrix, which leads to lower recommendation performance. Based on the artificial intelligence technology, this study proposes a recommendation algorithm for a security collaborative filtering service that integrates content similarity. A security collaborative filtering module is used to capture the complex interaction information between Mashup and Web services. By applying the content similarity module to extract the semantic similarity information between the Mashup and Web services, the two modules are seamlessly integrated into a deep neural network to accurately and quickly predict the rating information of Mashup for the Web services. Real data set on the intelligent CPS is captured and then compared with mainstream service recommendation algorithms. Experimental results show that the proposed algorithm not only efficiently completes the Web service recommendation task under the premise of sparse data but also shows better accuracy, effectivity, and privacy. Thus, the proposed method is highly suitable for the application of intelligence CPS.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Collaboration</subject><subject>Collaborative filtering</subject><subject>Cyber-physical systems</subject><subject>cyber–physical system (CPS)</subject><subject>Data processing</subject><subject>deep neural network</subject><subject>Embedded systems</subject><subject>Filtration</subject><subject>Internet of Things</subject><subject>Internet service providers</subject><subject>Mashup</subject><subject>Mashups</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Prediction algorithms</subject><subject>Privacy</subject><subject>Real time</subject><subject>Security</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Task analysis</subject><subject>Web service recommendation</subject><subject>Web services</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOAjEQhjdGEwnyAMZLE89g2-1u26NBUQwRI3jeLGUKxd0ttgWziQ9vCcR4mjl8__yTL0muCR4QguXdy3g6H1BMySDFIhcsO0s6NKW8z_Kcnv_bL5Oe9xuMcYxlROad5OcBYIteYefKKo7wbd0nmoHaORNaNLRVVS6sK4PZAxqZKoAzzQrN1BpqQNq6yLq9UYDeQdm6hmYZWdsg06BxE6CqzAqagIbtAlz_bd16o2LRrPUBan-VXOiy8tA7zW7yMXqcD5_7k-nTeHg_6Ssq0xA_ZzKnS7rEXOhMU6IxxxmWrMwEZ6USC0EiKLRcYCAplTTLgGmqlJbAljztJrfHu1tnv3bgQ7GxO9fEyoLylIiMUy4iRY6UctZ7B7rYOlOXri0ILg6ei4Pn4uC5OHmOmZtjxgDAHy8Z4zyn6S8DDXoX</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Liang, Wei</creator><creator>Xie, Songyou</creator><creator>Cai, Jiahong</creator><creator>Xu, Jianbo</creator><creator>Hu, Yupeng</creator><creator>Xu, Yang</creator><creator>Qiu, Meikang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3194-8369</orcidid><orcidid>https://orcid.org/0000-0002-5074-1363</orcidid><orcidid>https://orcid.org/0000-0002-7358-7426</orcidid><orcidid>https://orcid.org/0000-0002-1004-0140</orcidid><orcidid>https://orcid.org/0000-0002-1421-8022</orcidid></search><sort><creationdate>20221115</creationdate><title>Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems</title><author>Liang, Wei ; Xie, Songyou ; Cai, Jiahong ; Xu, Jianbo ; Hu, Yupeng ; Xu, Yang ; Qiu, Meikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-464962d2d078f5f21f0705094a5874ac8b812938f9b0e1329255e4f2ccf9e4d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Collaboration</topic><topic>Collaborative filtering</topic><topic>Cyber-physical systems</topic><topic>cyber–physical system (CPS)</topic><topic>Data processing</topic><topic>deep neural network</topic><topic>Embedded systems</topic><topic>Filtration</topic><topic>Internet of Things</topic><topic>Internet service providers</topic><topic>Mashup</topic><topic>Mashups</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Prediction algorithms</topic><topic>Privacy</topic><topic>Real time</topic><topic>Security</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Task analysis</topic><topic>Web service recommendation</topic><topic>Web services</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Xie, Songyou</creatorcontrib><creatorcontrib>Cai, Jiahong</creatorcontrib><creatorcontrib>Xu, Jianbo</creatorcontrib><creatorcontrib>Hu, Yupeng</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Qiu, Meikang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Wei</au><au>Xie, Songyou</au><au>Cai, Jiahong</au><au>Xu, Jianbo</au><au>Hu, Yupeng</au><au>Xu, Yang</au><au>Qiu, Meikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-11-15</date><risdate>2022</risdate><volume>9</volume><issue>22</issue><spage>22123</spage><epage>22132</epage><pages>22123-22132</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Cyber-physical systems (CPSs) is a security real-time embedded system. CPS integrates the information sensed by the current physical sensors, through high-speed real-time transmission, and then carries out powerful information processing to effectively interact and integrate the physical and the information worlds. With the aim to improve the quality of service, optimize the existing physical space, and increase security, collaborative filtering algorithms have also been widely used in various recommendation models for Internet of Things (IoT) services. However, general collaborative filtering algorithms cannot capture complex interactive information in the sparse Mashup-Web service call matrix, which leads to lower recommendation performance. Based on the artificial intelligence technology, this study proposes a recommendation algorithm for a security collaborative filtering service that integrates content similarity. A security collaborative filtering module is used to capture the complex interaction information between Mashup and Web services. By applying the content similarity module to extract the semantic similarity information between the Mashup and Web services, the two modules are seamlessly integrated into a deep neural network to accurately and quickly predict the rating information of Mashup for the Web services. Real data set on the intelligent CPS is captured and then compared with mainstream service recommendation algorithms. Experimental results show that the proposed algorithm not only efficiently completes the Web service recommendation task under the premise of sparse data but also shows better accuracy, effectivity, and privacy. Thus, the proposed method is highly suitable for the application of intelligence CPS.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3086845</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3194-8369</orcidid><orcidid>https://orcid.org/0000-0002-5074-1363</orcidid><orcidid>https://orcid.org/0000-0002-7358-7426</orcidid><orcidid>https://orcid.org/0000-0002-1004-0140</orcidid><orcidid>https://orcid.org/0000-0002-1421-8022</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2022-11, Vol.9 (22), p.22123-22132
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2731857278
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial intelligence
Artificial neural networks
Collaboration
Collaborative filtering
Cyber-physical systems
cyber–physical system (CPS)
Data processing
deep neural network
Embedded systems
Filtration
Internet of Things
Internet service providers
Mashup
Mashups
Modules
Neural networks
Prediction algorithms
Privacy
Real time
Security
Semantics
Similarity
Task analysis
Web service recommendation
Web services
title Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20Security%20Collaborative%20Filtering%20Scheme%20for%20Service%20Recommendation%20in%20Intelligent%20Cyber-Physical%20Systems&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liang,%20Wei&rft.date=2022-11-15&rft.volume=9&rft.issue=22&rft.spage=22123&rft.epage=22132&rft.pages=22123-22132&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3086845&rft_dat=%3Cproquest_RIE%3E2731857278%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731857278&rft_id=info:pmid/&rft_ieee_id=9447762&rfr_iscdi=true