Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design

Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2022-11, Vol.70 (11), p.4620-4634
Hauptverfasser: Swaminathan, Madhavan, Bhatti, Osama Waqar, Guo, Yiliang, Huang, Eric, Akinwande, Oluwaseyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!