Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design
Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2022-11, Vol.70 (11), p.4620-4634 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!