Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design
Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2022-11, Vol.70 (11), p.4620-4634 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4634 |
---|---|
container_issue | 11 |
container_start_page | 4620 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 70 |
creator | Swaminathan, Madhavan Bhatti, Osama Waqar Guo, Yiliang Huang, Eric Akinwande, Oluwaseyi |
description | Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover, optimization and inverse designs are better done using probabilities. This article describes the use of Bayes theorem and machine learning (ML) for solving complex microwave design problems. |
doi_str_mv | 10.1109/TMTT.2022.3206455 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2731853780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9913070</ieee_id><sourcerecordid>2731853780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-5aefafa111c827377eaf3a7dd3dd9069553fa6a95ec50ee374f266f3028d26f53</originalsourceid><addsrcrecordid>eNo9kF1LAzEQRYMoWKs_QHxZ8NWtk6RJdh-1fhUqRdk-h2F3UlJstiZbof56t7T4NFy49wwcxq45jDiH8r56r6qRACFGUoAeK3XCBlwpk5fawCkbAPAiL8cFnLOLlFZ9HCsoBuzzEXeUPIZsRhiDD8vMtTFbhJpihz50u-xji6HzztfY-TbcZfNN59f-95gwNNk0_FBMlD31pGW4ZGcOvxJdHe-QLV6eq8lbPpu_TicPs7yWUne5QnLokHNeF8JIYwidRNM0smlK0KVS0qHGUlGtgEiasRNaOwmiaIR2Sg7Z7YG7ie33llJnV-02hv6l7Xm8UNIU0Lf4oVXHNqVIzm6iX2PcWQ52r87u1dm9OntU129uDhtPRP_9suQSDMg_wlZq4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731853780</pqid></control><display><type>article</type><title>Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design</title><source>IEEE Electronic Library (IEL)</source><creator>Swaminathan, Madhavan ; Bhatti, Osama Waqar ; Guo, Yiliang ; Huang, Eric ; Akinwande, Oluwaseyi</creator><creatorcontrib>Swaminathan, Madhavan ; Bhatti, Osama Waqar ; Guo, Yiliang ; Huang, Eric ; Akinwande, Oluwaseyi</creatorcontrib><description>Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover, optimization and inverse designs are better done using probabilities. This article describes the use of Bayes theorem and machine learning (ML) for solving complex microwave design problems.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2022.3206455</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Bayes methods ; Bayes Theorem ; Circuit design ; Complexity ; Computing time ; Design optimization ; Gaussian processes (GPs) ; Inverse design ; invertible neural networks ; Kernel ; Machine learning ; Microwave circuits ; Microwave theory and techniques ; Neural networks ; neural networks (NNs) ; Optimization ; Predictions ; Uncertainty</subject><ispartof>IEEE transactions on microwave theory and techniques, 2022-11, Vol.70 (11), p.4620-4634</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-5aefafa111c827377eaf3a7dd3dd9069553fa6a95ec50ee374f266f3028d26f53</citedby><cites>FETCH-LOGICAL-c336t-5aefafa111c827377eaf3a7dd3dd9069553fa6a95ec50ee374f266f3028d26f53</cites><orcidid>0000-0002-4745-2886 ; 0000-0002-5698-9669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9913070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9913070$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Swaminathan, Madhavan</creatorcontrib><creatorcontrib>Bhatti, Osama Waqar</creatorcontrib><creatorcontrib>Guo, Yiliang</creatorcontrib><creatorcontrib>Huang, Eric</creatorcontrib><creatorcontrib>Akinwande, Oluwaseyi</creatorcontrib><title>Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover, optimization and inverse designs are better done using probabilities. This article describes the use of Bayes theorem and machine learning (ML) for solving complex microwave design problems.</description><subject>Artificial neural networks</subject><subject>Bayes methods</subject><subject>Bayes Theorem</subject><subject>Circuit design</subject><subject>Complexity</subject><subject>Computing time</subject><subject>Design optimization</subject><subject>Gaussian processes (GPs)</subject><subject>Inverse design</subject><subject>invertible neural networks</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Microwave circuits</subject><subject>Microwave theory and techniques</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>Optimization</subject><subject>Predictions</subject><subject>Uncertainty</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LAzEQRYMoWKs_QHxZ8NWtk6RJdh-1fhUqRdk-h2F3UlJstiZbof56t7T4NFy49wwcxq45jDiH8r56r6qRACFGUoAeK3XCBlwpk5fawCkbAPAiL8cFnLOLlFZ9HCsoBuzzEXeUPIZsRhiDD8vMtTFbhJpihz50u-xji6HzztfY-TbcZfNN59f-95gwNNk0_FBMlD31pGW4ZGcOvxJdHe-QLV6eq8lbPpu_TicPs7yWUne5QnLokHNeF8JIYwidRNM0smlK0KVS0qHGUlGtgEiasRNaOwmiaIR2Sg7Z7YG7ie33llJnV-02hv6l7Xm8UNIU0Lf4oVXHNqVIzm6iX2PcWQ52r87u1dm9OntU129uDhtPRP_9suQSDMg_wlZq4Q</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Swaminathan, Madhavan</creator><creator>Bhatti, Osama Waqar</creator><creator>Guo, Yiliang</creator><creator>Huang, Eric</creator><creator>Akinwande, Oluwaseyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4745-2886</orcidid><orcidid>https://orcid.org/0000-0002-5698-9669</orcidid></search><sort><creationdate>20221101</creationdate><title>Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design</title><author>Swaminathan, Madhavan ; Bhatti, Osama Waqar ; Guo, Yiliang ; Huang, Eric ; Akinwande, Oluwaseyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-5aefafa111c827377eaf3a7dd3dd9069553fa6a95ec50ee374f266f3028d26f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Bayes methods</topic><topic>Bayes Theorem</topic><topic>Circuit design</topic><topic>Complexity</topic><topic>Computing time</topic><topic>Design optimization</topic><topic>Gaussian processes (GPs)</topic><topic>Inverse design</topic><topic>invertible neural networks</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Microwave circuits</topic><topic>Microwave theory and techniques</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>Optimization</topic><topic>Predictions</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swaminathan, Madhavan</creatorcontrib><creatorcontrib>Bhatti, Osama Waqar</creatorcontrib><creatorcontrib>Guo, Yiliang</creatorcontrib><creatorcontrib>Huang, Eric</creatorcontrib><creatorcontrib>Akinwande, Oluwaseyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Swaminathan, Madhavan</au><au>Bhatti, Osama Waqar</au><au>Guo, Yiliang</au><au>Huang, Eric</au><au>Akinwande, Oluwaseyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>70</volume><issue>11</issue><spage>4620</spage><epage>4634</epage><pages>4620-4634</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover, optimization and inverse designs are better done using probabilities. This article describes the use of Bayes theorem and machine learning (ML) for solving complex microwave design problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2022.3206455</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4745-2886</orcidid><orcidid>https://orcid.org/0000-0002-5698-9669</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2022-11, Vol.70 (11), p.4620-4634 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_proquest_journals_2731853780 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Bayes methods Bayes Theorem Circuit design Complexity Computing time Design optimization Gaussian processes (GPs) Inverse design invertible neural networks Kernel Machine learning Microwave circuits Microwave theory and techniques Neural networks neural networks (NNs) Optimization Predictions Uncertainty |
title | Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Learning%20for%20Uncertainty%20Quantification,%20Optimization,%20and%20Inverse%20Design&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Swaminathan,%20Madhavan&rft.date=2022-11-01&rft.volume=70&rft.issue=11&rft.spage=4620&rft.epage=4634&rft.pages=4620-4634&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2022.3206455&rft_dat=%3Cproquest_RIE%3E2731853780%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731853780&rft_id=info:pmid/&rft_ieee_id=9913070&rfr_iscdi=true |