Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design

Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2022-11, Vol.70 (11), p.4620-4634
Hauptverfasser: Swaminathan, Madhavan, Bhatti, Osama Waqar, Guo, Yiliang, Huang, Eric, Akinwande, Oluwaseyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4634
container_issue 11
container_start_page 4620
container_title IEEE transactions on microwave theory and techniques
container_volume 70
creator Swaminathan, Madhavan
Bhatti, Osama Waqar
Guo, Yiliang
Huang, Eric
Akinwande, Oluwaseyi
description Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover, optimization and inverse designs are better done using probabilities. This article describes the use of Bayes theorem and machine learning (ML) for solving complex microwave design problems.
doi_str_mv 10.1109/TMTT.2022.3206455
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2731853780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9913070</ieee_id><sourcerecordid>2731853780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-5aefafa111c827377eaf3a7dd3dd9069553fa6a95ec50ee374f266f3028d26f53</originalsourceid><addsrcrecordid>eNo9kF1LAzEQRYMoWKs_QHxZ8NWtk6RJdh-1fhUqRdk-h2F3UlJstiZbof56t7T4NFy49wwcxq45jDiH8r56r6qRACFGUoAeK3XCBlwpk5fawCkbAPAiL8cFnLOLlFZ9HCsoBuzzEXeUPIZsRhiDD8vMtTFbhJpihz50u-xji6HzztfY-TbcZfNN59f-95gwNNk0_FBMlD31pGW4ZGcOvxJdHe-QLV6eq8lbPpu_TicPs7yWUne5QnLokHNeF8JIYwidRNM0smlK0KVS0qHGUlGtgEiasRNaOwmiaIR2Sg7Z7YG7ie33llJnV-02hv6l7Xm8UNIU0Lf4oVXHNqVIzm6iX2PcWQ52r87u1dm9OntU129uDhtPRP_9suQSDMg_wlZq4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731853780</pqid></control><display><type>article</type><title>Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design</title><source>IEEE Electronic Library (IEL)</source><creator>Swaminathan, Madhavan ; Bhatti, Osama Waqar ; Guo, Yiliang ; Huang, Eric ; Akinwande, Oluwaseyi</creator><creatorcontrib>Swaminathan, Madhavan ; Bhatti, Osama Waqar ; Guo, Yiliang ; Huang, Eric ; Akinwande, Oluwaseyi</creatorcontrib><description>Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover, optimization and inverse designs are better done using probabilities. This article describes the use of Bayes theorem and machine learning (ML) for solving complex microwave design problems.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2022.3206455</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Bayes methods ; Bayes Theorem ; Circuit design ; Complexity ; Computing time ; Design optimization ; Gaussian processes (GPs) ; Inverse design ; invertible neural networks ; Kernel ; Machine learning ; Microwave circuits ; Microwave theory and techniques ; Neural networks ; neural networks (NNs) ; Optimization ; Predictions ; Uncertainty</subject><ispartof>IEEE transactions on microwave theory and techniques, 2022-11, Vol.70 (11), p.4620-4634</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-5aefafa111c827377eaf3a7dd3dd9069553fa6a95ec50ee374f266f3028d26f53</citedby><cites>FETCH-LOGICAL-c336t-5aefafa111c827377eaf3a7dd3dd9069553fa6a95ec50ee374f266f3028d26f53</cites><orcidid>0000-0002-4745-2886 ; 0000-0002-5698-9669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9913070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9913070$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Swaminathan, Madhavan</creatorcontrib><creatorcontrib>Bhatti, Osama Waqar</creatorcontrib><creatorcontrib>Guo, Yiliang</creatorcontrib><creatorcontrib>Huang, Eric</creatorcontrib><creatorcontrib>Akinwande, Oluwaseyi</creatorcontrib><title>Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover, optimization and inverse designs are better done using probabilities. This article describes the use of Bayes theorem and machine learning (ML) for solving complex microwave design problems.</description><subject>Artificial neural networks</subject><subject>Bayes methods</subject><subject>Bayes Theorem</subject><subject>Circuit design</subject><subject>Complexity</subject><subject>Computing time</subject><subject>Design optimization</subject><subject>Gaussian processes (GPs)</subject><subject>Inverse design</subject><subject>invertible neural networks</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Microwave circuits</subject><subject>Microwave theory and techniques</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>Optimization</subject><subject>Predictions</subject><subject>Uncertainty</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LAzEQRYMoWKs_QHxZ8NWtk6RJdh-1fhUqRdk-h2F3UlJstiZbof56t7T4NFy49wwcxq45jDiH8r56r6qRACFGUoAeK3XCBlwpk5fawCkbAPAiL8cFnLOLlFZ9HCsoBuzzEXeUPIZsRhiDD8vMtTFbhJpihz50u-xji6HzztfY-TbcZfNN59f-95gwNNk0_FBMlD31pGW4ZGcOvxJdHe-QLV6eq8lbPpu_TicPs7yWUne5QnLokHNeF8JIYwidRNM0smlK0KVS0qHGUlGtgEiasRNaOwmiaIR2Sg7Z7YG7ie33llJnV-02hv6l7Xm8UNIU0Lf4oVXHNqVIzm6iX2PcWQ52r87u1dm9OntU129uDhtPRP_9suQSDMg_wlZq4Q</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Swaminathan, Madhavan</creator><creator>Bhatti, Osama Waqar</creator><creator>Guo, Yiliang</creator><creator>Huang, Eric</creator><creator>Akinwande, Oluwaseyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4745-2886</orcidid><orcidid>https://orcid.org/0000-0002-5698-9669</orcidid></search><sort><creationdate>20221101</creationdate><title>Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design</title><author>Swaminathan, Madhavan ; Bhatti, Osama Waqar ; Guo, Yiliang ; Huang, Eric ; Akinwande, Oluwaseyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-5aefafa111c827377eaf3a7dd3dd9069553fa6a95ec50ee374f266f3028d26f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Bayes methods</topic><topic>Bayes Theorem</topic><topic>Circuit design</topic><topic>Complexity</topic><topic>Computing time</topic><topic>Design optimization</topic><topic>Gaussian processes (GPs)</topic><topic>Inverse design</topic><topic>invertible neural networks</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Microwave circuits</topic><topic>Microwave theory and techniques</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>Optimization</topic><topic>Predictions</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swaminathan, Madhavan</creatorcontrib><creatorcontrib>Bhatti, Osama Waqar</creatorcontrib><creatorcontrib>Guo, Yiliang</creatorcontrib><creatorcontrib>Huang, Eric</creatorcontrib><creatorcontrib>Akinwande, Oluwaseyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Swaminathan, Madhavan</au><au>Bhatti, Osama Waqar</au><au>Guo, Yiliang</au><au>Huang, Eric</au><au>Akinwande, Oluwaseyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>70</volume><issue>11</issue><spage>4620</spage><epage>4634</epage><pages>4620-4634</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Design of microwave circuits require extensive simulations, which often take significant computational time due to design complexity. This can be addressed through neural networks (NNs) that provide predictive capability. Predictions often come with uncertainties that need to be quantified. Moreover, optimization and inverse designs are better done using probabilities. This article describes the use of Bayes theorem and machine learning (ML) for solving complex microwave design problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2022.3206455</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4745-2886</orcidid><orcidid>https://orcid.org/0000-0002-5698-9669</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2022-11, Vol.70 (11), p.4620-4634
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_journals_2731853780
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Bayes methods
Bayes Theorem
Circuit design
Complexity
Computing time
Design optimization
Gaussian processes (GPs)
Inverse design
invertible neural networks
Kernel
Machine learning
Microwave circuits
Microwave theory and techniques
Neural networks
neural networks (NNs)
Optimization
Predictions
Uncertainty
title Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Learning%20for%20Uncertainty%20Quantification,%20Optimization,%20and%20Inverse%20Design&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Swaminathan,%20Madhavan&rft.date=2022-11-01&rft.volume=70&rft.issue=11&rft.spage=4620&rft.epage=4634&rft.pages=4620-4634&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2022.3206455&rft_dat=%3Cproquest_RIE%3E2731853780%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731853780&rft_id=info:pmid/&rft_ieee_id=9913070&rfr_iscdi=true