Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler

TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Welding in the world 2022-12, Vol.66 (12), p.2625-2638
Hauptverfasser: Ling, Liangjian, Teng, Junfei, Chen, Maoai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2638
container_issue 12
container_start_page 2625
container_title Welding in the world
container_volume 66
creator Ling, Liangjian
Teng, Junfei
Chen, Maoai
description TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue properties were further analyzed. The interfacial microstructure of the brazed joint at 940 °C for 60 min consists of coarse acicular α Ti, (Ti/Zr) 2 (Cu/Ni) intermetallics, eutectoid α Ti, and residual β Ti. The nucleation and growth of α Ti cause the component segregation, resulting in the rich of Cu, Ni, and V in β Ti to form β rich Ti, which in turn leads to the eutectoid decomposition reaction of β rich Ti, and the formation of granular intermetallic compounds at the edge of residual β Ti. The tensile strength increases first and then decreases with the brazing time, the maximum tensile strength (984.90 MPa) is obtained at 940 °C for 60 min, and the elongation at break increases with the prolongation of the brazing time; the maximum elongation at break (12.39%) is obtained at the brazing time of 90 min due to the large size of the α p phase. The fatigue limit of the brazed joints at 940 °C for 60 min is 492 MPa. The location of fracture is highly dependent on the fatigue load stress amplitude, and the growth rate of the fatigue crack is greatly affected by the microstructure of the fracture area.
doi_str_mv 10.1007/s40194-022-01387-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731762920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731762920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8fbd2dd441ab53f4e3b132c856fd4a5b45590dd0fedb1b52ceeaf558108585b63</originalsourceid><addsrcrecordid>eNp9kM1qGzEUhUVJoU6aF-hK0G3U6ndGswwmPwWHbpxNNkIaSbbMeORIGod01TxD37BPUjkOZNfF5V4u55x7-QD4QvA3gnH7PXNMOo4wpQgTJltEPoAZka1ETdN0J2CGMWeIUik_gdOcNxjjrtYMvNyFPsVc0tSXKTno9nGYSojjBbTB-ynXERq31vsQE9SjhV6XsJoc3KW4c6kEl2H0cDnnsISixzBtoR6G-Aw3MYwlQ5P0L2fhUyhruAx_f_95SMjoXFc-DINLn8FHr4fszt_6Gbi_vlrOb9Hi582P-eUC9Yx0BUlvLLWWc6KNYJ47ZgijvRSNt1wLw4XosLXYO2uIEbR3TnshJMFSSGEadga-HnPr44-Ty0Vt4pTGelLRlpG2oR3FVUWPqgOVnJxXuxS2Oj0rgtUBtTqiVhW1ekWtSDWxoylX8bhy6T36P65_CUyFRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731762920</pqid></control><display><type>article</type><title>Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ling, Liangjian ; Teng, Junfei ; Chen, Maoai</creator><creatorcontrib>Ling, Liangjian ; Teng, Junfei ; Chen, Maoai</creatorcontrib><description>TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue properties were further analyzed. The interfacial microstructure of the brazed joint at 940 °C for 60 min consists of coarse acicular α Ti, (Ti/Zr) 2 (Cu/Ni) intermetallics, eutectoid α Ti, and residual β Ti. The nucleation and growth of α Ti cause the component segregation, resulting in the rich of Cu, Ni, and V in β Ti to form β rich Ti, which in turn leads to the eutectoid decomposition reaction of β rich Ti, and the formation of granular intermetallic compounds at the edge of residual β Ti. The tensile strength increases first and then decreases with the brazing time, the maximum tensile strength (984.90 MPa) is obtained at 940 °C for 60 min, and the elongation at break increases with the prolongation of the brazing time; the maximum elongation at break (12.39%) is obtained at the brazing time of 90 min due to the large size of the α p phase. The fatigue limit of the brazed joints at 940 °C for 60 min is 492 MPa. The location of fracture is highly dependent on the fatigue load stress amplitude, and the growth rate of the fatigue crack is greatly affected by the microstructure of the fracture area.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-022-01387-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brazed joints ; Chemistry and Materials Science ; Copper ; Crack propagation ; Decomposition reactions ; Elongation ; Eutectoid decomposition ; Eutectoid reactions ; Evolution ; Fatigue failure ; Fatigue limit ; Fillers ; Heat treating ; High cycle fatigue ; Intermetallic compounds ; Materials Science ; Metallic Materials ; Microstructure ; Nickel ; Nucleation ; Prolongation ; Research Paper ; Solid Mechanics ; Tensile properties ; Tensile strength ; Theoretical and Applied Mechanics ; Titanium alloys ; Titanium base alloys ; Vacuum brazing ; Zirconium</subject><ispartof>Welding in the world, 2022-12, Vol.66 (12), p.2625-2638</ispartof><rights>International Institute of Welding 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8fbd2dd441ab53f4e3b132c856fd4a5b45590dd0fedb1b52ceeaf558108585b63</citedby><cites>FETCH-LOGICAL-c319t-8fbd2dd441ab53f4e3b132c856fd4a5b45590dd0fedb1b52ceeaf558108585b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-022-01387-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-022-01387-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ling, Liangjian</creatorcontrib><creatorcontrib>Teng, Junfei</creatorcontrib><creatorcontrib>Chen, Maoai</creatorcontrib><title>Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue properties were further analyzed. The interfacial microstructure of the brazed joint at 940 °C for 60 min consists of coarse acicular α Ti, (Ti/Zr) 2 (Cu/Ni) intermetallics, eutectoid α Ti, and residual β Ti. The nucleation and growth of α Ti cause the component segregation, resulting in the rich of Cu, Ni, and V in β Ti to form β rich Ti, which in turn leads to the eutectoid decomposition reaction of β rich Ti, and the formation of granular intermetallic compounds at the edge of residual β Ti. The tensile strength increases first and then decreases with the brazing time, the maximum tensile strength (984.90 MPa) is obtained at 940 °C for 60 min, and the elongation at break increases with the prolongation of the brazing time; the maximum elongation at break (12.39%) is obtained at the brazing time of 90 min due to the large size of the α p phase. The fatigue limit of the brazed joints at 940 °C for 60 min is 492 MPa. The location of fracture is highly dependent on the fatigue load stress amplitude, and the growth rate of the fatigue crack is greatly affected by the microstructure of the fracture area.</description><subject>Brazed joints</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crack propagation</subject><subject>Decomposition reactions</subject><subject>Elongation</subject><subject>Eutectoid decomposition</subject><subject>Eutectoid reactions</subject><subject>Evolution</subject><subject>Fatigue failure</subject><subject>Fatigue limit</subject><subject>Fillers</subject><subject>Heat treating</subject><subject>High cycle fatigue</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Nucleation</subject><subject>Prolongation</subject><subject>Research Paper</subject><subject>Solid Mechanics</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Theoretical and Applied Mechanics</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Vacuum brazing</subject><subject>Zirconium</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qGzEUhUVJoU6aF-hK0G3U6ndGswwmPwWHbpxNNkIaSbbMeORIGod01TxD37BPUjkOZNfF5V4u55x7-QD4QvA3gnH7PXNMOo4wpQgTJltEPoAZka1ETdN0J2CGMWeIUik_gdOcNxjjrtYMvNyFPsVc0tSXKTno9nGYSojjBbTB-ynXERq31vsQE9SjhV6XsJoc3KW4c6kEl2H0cDnnsISixzBtoR6G-Aw3MYwlQ5P0L2fhUyhruAx_f_95SMjoXFc-DINLn8FHr4fszt_6Gbi_vlrOb9Hi582P-eUC9Yx0BUlvLLWWc6KNYJ47ZgijvRSNt1wLw4XosLXYO2uIEbR3TnshJMFSSGEadga-HnPr44-Ty0Vt4pTGelLRlpG2oR3FVUWPqgOVnJxXuxS2Oj0rgtUBtTqiVhW1ekWtSDWxoylX8bhy6T36P65_CUyFRg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ling, Liangjian</creator><creator>Teng, Junfei</creator><creator>Chen, Maoai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler</title><author>Ling, Liangjian ; Teng, Junfei ; Chen, Maoai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8fbd2dd441ab53f4e3b132c856fd4a5b45590dd0fedb1b52ceeaf558108585b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brazed joints</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crack propagation</topic><topic>Decomposition reactions</topic><topic>Elongation</topic><topic>Eutectoid decomposition</topic><topic>Eutectoid reactions</topic><topic>Evolution</topic><topic>Fatigue failure</topic><topic>Fatigue limit</topic><topic>Fillers</topic><topic>Heat treating</topic><topic>High cycle fatigue</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Nucleation</topic><topic>Prolongation</topic><topic>Research Paper</topic><topic>Solid Mechanics</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Theoretical and Applied Mechanics</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Vacuum brazing</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Liangjian</creatorcontrib><creatorcontrib>Teng, Junfei</creatorcontrib><creatorcontrib>Chen, Maoai</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Liangjian</au><au>Teng, Junfei</au><au>Chen, Maoai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>66</volume><issue>12</issue><spage>2625</spage><epage>2638</epage><pages>2625-2638</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue properties were further analyzed. The interfacial microstructure of the brazed joint at 940 °C for 60 min consists of coarse acicular α Ti, (Ti/Zr) 2 (Cu/Ni) intermetallics, eutectoid α Ti, and residual β Ti. The nucleation and growth of α Ti cause the component segregation, resulting in the rich of Cu, Ni, and V in β Ti to form β rich Ti, which in turn leads to the eutectoid decomposition reaction of β rich Ti, and the formation of granular intermetallic compounds at the edge of residual β Ti. The tensile strength increases first and then decreases with the brazing time, the maximum tensile strength (984.90 MPa) is obtained at 940 °C for 60 min, and the elongation at break increases with the prolongation of the brazing time; the maximum elongation at break (12.39%) is obtained at the brazing time of 90 min due to the large size of the α p phase. The fatigue limit of the brazed joints at 940 °C for 60 min is 492 MPa. The location of fracture is highly dependent on the fatigue load stress amplitude, and the growth rate of the fatigue crack is greatly affected by the microstructure of the fracture area.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-022-01387-1</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-2288
ispartof Welding in the world, 2022-12, Vol.66 (12), p.2625-2638
issn 0043-2288
1878-6669
language eng
recordid cdi_proquest_journals_2731762920
source SpringerLink Journals - AutoHoldings
subjects Brazed joints
Chemistry and Materials Science
Copper
Crack propagation
Decomposition reactions
Elongation
Eutectoid decomposition
Eutectoid reactions
Evolution
Fatigue failure
Fatigue limit
Fillers
Heat treating
High cycle fatigue
Intermetallic compounds
Materials Science
Metallic Materials
Microstructure
Nickel
Nucleation
Prolongation
Research Paper
Solid Mechanics
Tensile properties
Tensile strength
Theoretical and Applied Mechanics
Titanium alloys
Titanium base alloys
Vacuum brazing
Zirconium
title Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution,%20diffusion%20behavior%20and%20fatigue%20properties%20of%20TC4%20titanium%20alloy%20joints%20brazed%20with%20Ti%E2%80%93Zr-based%20filler&rft.jtitle=Welding%20in%20the%20world&rft.au=Ling,%20Liangjian&rft.date=2022-12-01&rft.volume=66&rft.issue=12&rft.spage=2625&rft.epage=2638&rft.pages=2625-2638&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-022-01387-1&rft_dat=%3Cproquest_cross%3E2731762920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731762920&rft_id=info:pmid/&rfr_iscdi=true