Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler
TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue p...
Gespeichert in:
Veröffentlicht in: | Welding in the world 2022-12, Vol.66 (12), p.2625-2638 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2638 |
---|---|
container_issue | 12 |
container_start_page | 2625 |
container_title | Welding in the world |
container_volume | 66 |
creator | Ling, Liangjian Teng, Junfei Chen, Maoai |
description | TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue properties were further analyzed. The interfacial microstructure of the brazed joint at 940 °C for 60 min consists of coarse acicular α Ti, (Ti/Zr)
2
(Cu/Ni) intermetallics, eutectoid α Ti, and residual β Ti. The nucleation and growth of α Ti cause the component segregation, resulting in the rich of Cu, Ni, and V in β Ti to form β
rich
Ti, which in turn leads to the eutectoid decomposition reaction of β
rich
Ti, and the formation of granular intermetallic compounds at the edge of residual β Ti. The tensile strength increases first and then decreases with the brazing time, the maximum tensile strength (984.90 MPa) is obtained at 940 °C for 60 min, and the elongation at break increases with the prolongation of the brazing time; the maximum elongation at break (12.39%) is obtained at the brazing time of 90 min due to the large size of the α
p
phase. The fatigue limit of the brazed joints at 940 °C for 60 min is 492 MPa. The location of fracture is highly dependent on the fatigue load stress amplitude, and the growth rate of the fatigue crack is greatly affected by the microstructure of the fracture area. |
doi_str_mv | 10.1007/s40194-022-01387-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731762920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731762920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8fbd2dd441ab53f4e3b132c856fd4a5b45590dd0fedb1b52ceeaf558108585b63</originalsourceid><addsrcrecordid>eNp9kM1qGzEUhUVJoU6aF-hK0G3U6ndGswwmPwWHbpxNNkIaSbbMeORIGod01TxD37BPUjkOZNfF5V4u55x7-QD4QvA3gnH7PXNMOo4wpQgTJltEPoAZka1ETdN0J2CGMWeIUik_gdOcNxjjrtYMvNyFPsVc0tSXKTno9nGYSojjBbTB-ynXERq31vsQE9SjhV6XsJoc3KW4c6kEl2H0cDnnsISixzBtoR6G-Aw3MYwlQ5P0L2fhUyhruAx_f_95SMjoXFc-DINLn8FHr4fszt_6Gbi_vlrOb9Hi582P-eUC9Yx0BUlvLLWWc6KNYJ47ZgijvRSNt1wLw4XosLXYO2uIEbR3TnshJMFSSGEadga-HnPr44-Ty0Vt4pTGelLRlpG2oR3FVUWPqgOVnJxXuxS2Oj0rgtUBtTqiVhW1ekWtSDWxoylX8bhy6T36P65_CUyFRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731762920</pqid></control><display><type>article</type><title>Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ling, Liangjian ; Teng, Junfei ; Chen, Maoai</creator><creatorcontrib>Ling, Liangjian ; Teng, Junfei ; Chen, Maoai</creatorcontrib><description>TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue properties were further analyzed. The interfacial microstructure of the brazed joint at 940 °C for 60 min consists of coarse acicular α Ti, (Ti/Zr)
2
(Cu/Ni) intermetallics, eutectoid α Ti, and residual β Ti. The nucleation and growth of α Ti cause the component segregation, resulting in the rich of Cu, Ni, and V in β Ti to form β
rich
Ti, which in turn leads to the eutectoid decomposition reaction of β
rich
Ti, and the formation of granular intermetallic compounds at the edge of residual β Ti. The tensile strength increases first and then decreases with the brazing time, the maximum tensile strength (984.90 MPa) is obtained at 940 °C for 60 min, and the elongation at break increases with the prolongation of the brazing time; the maximum elongation at break (12.39%) is obtained at the brazing time of 90 min due to the large size of the α
p
phase. The fatigue limit of the brazed joints at 940 °C for 60 min is 492 MPa. The location of fracture is highly dependent on the fatigue load stress amplitude, and the growth rate of the fatigue crack is greatly affected by the microstructure of the fracture area.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-022-01387-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brazed joints ; Chemistry and Materials Science ; Copper ; Crack propagation ; Decomposition reactions ; Elongation ; Eutectoid decomposition ; Eutectoid reactions ; Evolution ; Fatigue failure ; Fatigue limit ; Fillers ; Heat treating ; High cycle fatigue ; Intermetallic compounds ; Materials Science ; Metallic Materials ; Microstructure ; Nickel ; Nucleation ; Prolongation ; Research Paper ; Solid Mechanics ; Tensile properties ; Tensile strength ; Theoretical and Applied Mechanics ; Titanium alloys ; Titanium base alloys ; Vacuum brazing ; Zirconium</subject><ispartof>Welding in the world, 2022-12, Vol.66 (12), p.2625-2638</ispartof><rights>International Institute of Welding 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8fbd2dd441ab53f4e3b132c856fd4a5b45590dd0fedb1b52ceeaf558108585b63</citedby><cites>FETCH-LOGICAL-c319t-8fbd2dd441ab53f4e3b132c856fd4a5b45590dd0fedb1b52ceeaf558108585b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-022-01387-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-022-01387-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ling, Liangjian</creatorcontrib><creatorcontrib>Teng, Junfei</creatorcontrib><creatorcontrib>Chen, Maoai</creatorcontrib><title>Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue properties were further analyzed. The interfacial microstructure of the brazed joint at 940 °C for 60 min consists of coarse acicular α Ti, (Ti/Zr)
2
(Cu/Ni) intermetallics, eutectoid α Ti, and residual β Ti. The nucleation and growth of α Ti cause the component segregation, resulting in the rich of Cu, Ni, and V in β Ti to form β
rich
Ti, which in turn leads to the eutectoid decomposition reaction of β
rich
Ti, and the formation of granular intermetallic compounds at the edge of residual β Ti. The tensile strength increases first and then decreases with the brazing time, the maximum tensile strength (984.90 MPa) is obtained at 940 °C for 60 min, and the elongation at break increases with the prolongation of the brazing time; the maximum elongation at break (12.39%) is obtained at the brazing time of 90 min due to the large size of the α
p
phase. The fatigue limit of the brazed joints at 940 °C for 60 min is 492 MPa. The location of fracture is highly dependent on the fatigue load stress amplitude, and the growth rate of the fatigue crack is greatly affected by the microstructure of the fracture area.</description><subject>Brazed joints</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crack propagation</subject><subject>Decomposition reactions</subject><subject>Elongation</subject><subject>Eutectoid decomposition</subject><subject>Eutectoid reactions</subject><subject>Evolution</subject><subject>Fatigue failure</subject><subject>Fatigue limit</subject><subject>Fillers</subject><subject>Heat treating</subject><subject>High cycle fatigue</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Nucleation</subject><subject>Prolongation</subject><subject>Research Paper</subject><subject>Solid Mechanics</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Theoretical and Applied Mechanics</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Vacuum brazing</subject><subject>Zirconium</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qGzEUhUVJoU6aF-hK0G3U6ndGswwmPwWHbpxNNkIaSbbMeORIGod01TxD37BPUjkOZNfF5V4u55x7-QD4QvA3gnH7PXNMOo4wpQgTJltEPoAZka1ETdN0J2CGMWeIUik_gdOcNxjjrtYMvNyFPsVc0tSXKTno9nGYSojjBbTB-ynXERq31vsQE9SjhV6XsJoc3KW4c6kEl2H0cDnnsISixzBtoR6G-Aw3MYwlQ5P0L2fhUyhruAx_f_95SMjoXFc-DINLn8FHr4fszt_6Gbi_vlrOb9Hi582P-eUC9Yx0BUlvLLWWc6KNYJ47ZgijvRSNt1wLw4XosLXYO2uIEbR3TnshJMFSSGEadga-HnPr44-Ty0Vt4pTGelLRlpG2oR3FVUWPqgOVnJxXuxS2Oj0rgtUBtTqiVhW1ekWtSDWxoylX8bhy6T36P65_CUyFRg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ling, Liangjian</creator><creator>Teng, Junfei</creator><creator>Chen, Maoai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler</title><author>Ling, Liangjian ; Teng, Junfei ; Chen, Maoai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8fbd2dd441ab53f4e3b132c856fd4a5b45590dd0fedb1b52ceeaf558108585b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brazed joints</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crack propagation</topic><topic>Decomposition reactions</topic><topic>Elongation</topic><topic>Eutectoid decomposition</topic><topic>Eutectoid reactions</topic><topic>Evolution</topic><topic>Fatigue failure</topic><topic>Fatigue limit</topic><topic>Fillers</topic><topic>Heat treating</topic><topic>High cycle fatigue</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Nucleation</topic><topic>Prolongation</topic><topic>Research Paper</topic><topic>Solid Mechanics</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Theoretical and Applied Mechanics</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Vacuum brazing</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Liangjian</creatorcontrib><creatorcontrib>Teng, Junfei</creatorcontrib><creatorcontrib>Chen, Maoai</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Liangjian</au><au>Teng, Junfei</au><au>Chen, Maoai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>66</volume><issue>12</issue><spage>2625</spage><epage>2638</epage><pages>2625-2638</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue properties were further analyzed. The interfacial microstructure of the brazed joint at 940 °C for 60 min consists of coarse acicular α Ti, (Ti/Zr)
2
(Cu/Ni) intermetallics, eutectoid α Ti, and residual β Ti. The nucleation and growth of α Ti cause the component segregation, resulting in the rich of Cu, Ni, and V in β Ti to form β
rich
Ti, which in turn leads to the eutectoid decomposition reaction of β
rich
Ti, and the formation of granular intermetallic compounds at the edge of residual β Ti. The tensile strength increases first and then decreases with the brazing time, the maximum tensile strength (984.90 MPa) is obtained at 940 °C for 60 min, and the elongation at break increases with the prolongation of the brazing time; the maximum elongation at break (12.39%) is obtained at the brazing time of 90 min due to the large size of the α
p
phase. The fatigue limit of the brazed joints at 940 °C for 60 min is 492 MPa. The location of fracture is highly dependent on the fatigue load stress amplitude, and the growth rate of the fatigue crack is greatly affected by the microstructure of the fracture area.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-022-01387-1</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-2288 |
ispartof | Welding in the world, 2022-12, Vol.66 (12), p.2625-2638 |
issn | 0043-2288 1878-6669 |
language | eng |
recordid | cdi_proquest_journals_2731762920 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brazed joints Chemistry and Materials Science Copper Crack propagation Decomposition reactions Elongation Eutectoid decomposition Eutectoid reactions Evolution Fatigue failure Fatigue limit Fillers Heat treating High cycle fatigue Intermetallic compounds Materials Science Metallic Materials Microstructure Nickel Nucleation Prolongation Research Paper Solid Mechanics Tensile properties Tensile strength Theoretical and Applied Mechanics Titanium alloys Titanium base alloys Vacuum brazing Zirconium |
title | Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution,%20diffusion%20behavior%20and%20fatigue%20properties%20of%20TC4%20titanium%20alloy%20joints%20brazed%20with%20Ti%E2%80%93Zr-based%20filler&rft.jtitle=Welding%20in%20the%20world&rft.au=Ling,%20Liangjian&rft.date=2022-12-01&rft.volume=66&rft.issue=12&rft.spage=2625&rft.epage=2638&rft.pages=2625-2638&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-022-01387-1&rft_dat=%3Cproquest_cross%3E2731762920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731762920&rft_id=info:pmid/&rfr_iscdi=true |