Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem
In this paper, we analyze a divergence‐free finite element method to solve a fluid–structure interaction spectral problem in the three‐dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2023-01, Vol.39 (1), p.163-186 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 1 |
container_start_page | 163 |
container_title | Numerical methods for partial differential equations |
container_volume | 39 |
creator | Alonso‐Rodríguez, Ana Camaño, Jessika De Los Santos, Eduardo Rodríguez, Rodolfo |
description | In this paper, we analyze a divergence‐free finite element method to solve a fluid–structure interaction spectral problem in the three‐dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence‐free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method. |
doi_str_mv | 10.1002/num.22862 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731664867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731664867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2572-8cb1dd0b8a6601add7f4c15989594fd38cb0083ebee1cb345f1379db9bca5fed3</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiFQ8AeWqCg2sb3vEvGWAjREojN-jImjzTrYu0Hp-AS-kS_BZGmpprhn7p25CJ1SMqGEsGnbryaMVQXbQyNK6iphGSv20YiUWZ3QvH45REchLAmhNKf1CL1e2Q34N2gVfH9-GQ-AjW1tBxgaWEHbBWycx90CcLQGb5VocHBN31nXYmewwIut9g4aETqr8MZKL3ba2jsZLY7RgRFNgJO_OUbzm-vny7tk9nR7f3kxSxTLS5ZUSlKtiaxEURAqtC5NpuK9VZ3XmdFp1AmpUpAAVMk0yw1Ny1rLWiqRG9DpGJ0NvjH3vYfQ8aXrfRsjOStTWhRZVZSROh8o5V0IHgxfe7sSfssp4b8F8vgl3xUY2enAftgGtv-D_HH-MGz8AIVcdY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731664867</pqid></control><display><type>article</type><title>Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem</title><source>Wiley Journals</source><creator>Alonso‐Rodríguez, Ana ; Camaño, Jessika ; De Los Santos, Eduardo ; Rodríguez, Rodolfo</creator><creatorcontrib>Alonso‐Rodríguez, Ana ; Camaño, Jessika ; De Los Santos, Eduardo ; Rodríguez, Rodolfo</creatorcontrib><description>In this paper, we analyze a divergence‐free finite element method to solve a fluid–structure interaction spectral problem in the three‐dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence‐free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22862</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Approximation ; Divergence ; Eigenvalues ; Eigenvectors ; Finite element method ; finite elements ; Fluid pressure ; Fluid-structure interaction ; spectral problems ; Vibration analysis ; vibrations</subject><ispartof>Numerical methods for partial differential equations, 2023-01, Vol.39 (1), p.163-186</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2572-8cb1dd0b8a6601add7f4c15989594fd38cb0083ebee1cb345f1379db9bca5fed3</cites><orcidid>0000-0001-7742-2250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22862$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22862$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Alonso‐Rodríguez, Ana</creatorcontrib><creatorcontrib>Camaño, Jessika</creatorcontrib><creatorcontrib>De Los Santos, Eduardo</creatorcontrib><creatorcontrib>Rodríguez, Rodolfo</creatorcontrib><title>Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem</title><title>Numerical methods for partial differential equations</title><description>In this paper, we analyze a divergence‐free finite element method to solve a fluid–structure interaction spectral problem in the three‐dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence‐free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.</description><subject>Approximation</subject><subject>Divergence</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Finite element method</subject><subject>finite elements</subject><subject>Fluid pressure</subject><subject>Fluid-structure interaction</subject><subject>spectral problems</subject><subject>Vibration analysis</subject><subject>vibrations</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiFQ8AeWqCg2sb3vEvGWAjREojN-jImjzTrYu0Hp-AS-kS_BZGmpprhn7p25CJ1SMqGEsGnbryaMVQXbQyNK6iphGSv20YiUWZ3QvH45REchLAmhNKf1CL1e2Q34N2gVfH9-GQ-AjW1tBxgaWEHbBWycx90CcLQGb5VocHBN31nXYmewwIut9g4aETqr8MZKL3ba2jsZLY7RgRFNgJO_OUbzm-vny7tk9nR7f3kxSxTLS5ZUSlKtiaxEURAqtC5NpuK9VZ3XmdFp1AmpUpAAVMk0yw1Ny1rLWiqRG9DpGJ0NvjH3vYfQ8aXrfRsjOStTWhRZVZSROh8o5V0IHgxfe7sSfssp4b8F8vgl3xUY2enAftgGtv-D_HH-MGz8AIVcdY8</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Alonso‐Rodríguez, Ana</creator><creator>Camaño, Jessika</creator><creator>De Los Santos, Eduardo</creator><creator>Rodríguez, Rodolfo</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7742-2250</orcidid></search><sort><creationdate>202301</creationdate><title>Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem</title><author>Alonso‐Rodríguez, Ana ; Camaño, Jessika ; De Los Santos, Eduardo ; Rodríguez, Rodolfo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2572-8cb1dd0b8a6601add7f4c15989594fd38cb0083ebee1cb345f1379db9bca5fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Divergence</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Finite element method</topic><topic>finite elements</topic><topic>Fluid pressure</topic><topic>Fluid-structure interaction</topic><topic>spectral problems</topic><topic>Vibration analysis</topic><topic>vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso‐Rodríguez, Ana</creatorcontrib><creatorcontrib>Camaño, Jessika</creatorcontrib><creatorcontrib>De Los Santos, Eduardo</creatorcontrib><creatorcontrib>Rodríguez, Rodolfo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso‐Rodríguez, Ana</au><au>Camaño, Jessika</au><au>De Los Santos, Eduardo</au><au>Rodríguez, Rodolfo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2023-01</date><risdate>2023</risdate><volume>39</volume><issue>1</issue><spage>163</spage><epage>186</epage><pages>163-186</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this paper, we analyze a divergence‐free finite element method to solve a fluid–structure interaction spectral problem in the three‐dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence‐free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/num.22862</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0001-7742-2250</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2023-01, Vol.39 (1), p.163-186 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_2731664867 |
source | Wiley Journals |
subjects | Approximation Divergence Eigenvalues Eigenvectors Finite element method finite elements Fluid pressure Fluid-structure interaction spectral problems Vibration analysis vibrations |
title | Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence%E2%80%90free%20finite%20elements%20for%20the%20numerical%20solution%20of%20a%20hydroelastic%20vibration%20problem&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Alonso%E2%80%90Rodr%C3%ADguez,%20Ana&rft.date=2023-01&rft.volume=39&rft.issue=1&rft.spage=163&rft.epage=186&rft.pages=163-186&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22862&rft_dat=%3Cproquest_cross%3E2731664867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731664867&rft_id=info:pmid/&rfr_iscdi=true |