Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem

In this paper, we analyze a divergence‐free finite element method to solve a fluid–structure interaction spectral problem in the three‐dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2023-01, Vol.39 (1), p.163-186
Hauptverfasser: Alonso‐Rodríguez, Ana, Camaño, Jessika, De Los Santos, Eduardo, Rodríguez, Rodolfo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 1
container_start_page 163
container_title Numerical methods for partial differential equations
container_volume 39
creator Alonso‐Rodríguez, Ana
Camaño, Jessika
De Los Santos, Eduardo
Rodríguez, Rodolfo
description In this paper, we analyze a divergence‐free finite element method to solve a fluid–structure interaction spectral problem in the three‐dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence‐free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.
doi_str_mv 10.1002/num.22862
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731664867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731664867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2572-8cb1dd0b8a6601add7f4c15989594fd38cb0083ebee1cb345f1379db9bca5fed3</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiFQ8AeWqCg2sb3vEvGWAjREojN-jImjzTrYu0Hp-AS-kS_BZGmpprhn7p25CJ1SMqGEsGnbryaMVQXbQyNK6iphGSv20YiUWZ3QvH45REchLAmhNKf1CL1e2Q34N2gVfH9-GQ-AjW1tBxgaWEHbBWycx90CcLQGb5VocHBN31nXYmewwIut9g4aETqr8MZKL3ba2jsZLY7RgRFNgJO_OUbzm-vny7tk9nR7f3kxSxTLS5ZUSlKtiaxEURAqtC5NpuK9VZ3XmdFp1AmpUpAAVMk0yw1Ny1rLWiqRG9DpGJ0NvjH3vYfQ8aXrfRsjOStTWhRZVZSROh8o5V0IHgxfe7sSfssp4b8F8vgl3xUY2enAftgGtv-D_HH-MGz8AIVcdY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731664867</pqid></control><display><type>article</type><title>Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem</title><source>Wiley Journals</source><creator>Alonso‐Rodríguez, Ana ; Camaño, Jessika ; De Los Santos, Eduardo ; Rodríguez, Rodolfo</creator><creatorcontrib>Alonso‐Rodríguez, Ana ; Camaño, Jessika ; De Los Santos, Eduardo ; Rodríguez, Rodolfo</creatorcontrib><description>In this paper, we analyze a divergence‐free finite element method to solve a fluid–structure interaction spectral problem in the three‐dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence‐free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22862</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Approximation ; Divergence ; Eigenvalues ; Eigenvectors ; Finite element method ; finite elements ; Fluid pressure ; Fluid-structure interaction ; spectral problems ; Vibration analysis ; vibrations</subject><ispartof>Numerical methods for partial differential equations, 2023-01, Vol.39 (1), p.163-186</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2572-8cb1dd0b8a6601add7f4c15989594fd38cb0083ebee1cb345f1379db9bca5fed3</cites><orcidid>0000-0001-7742-2250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22862$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22862$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Alonso‐Rodríguez, Ana</creatorcontrib><creatorcontrib>Camaño, Jessika</creatorcontrib><creatorcontrib>De Los Santos, Eduardo</creatorcontrib><creatorcontrib>Rodríguez, Rodolfo</creatorcontrib><title>Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem</title><title>Numerical methods for partial differential equations</title><description>In this paper, we analyze a divergence‐free finite element method to solve a fluid–structure interaction spectral problem in the three‐dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence‐free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.</description><subject>Approximation</subject><subject>Divergence</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Finite element method</subject><subject>finite elements</subject><subject>Fluid pressure</subject><subject>Fluid-structure interaction</subject><subject>spectral problems</subject><subject>Vibration analysis</subject><subject>vibrations</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiFQ8AeWqCg2sb3vEvGWAjREojN-jImjzTrYu0Hp-AS-kS_BZGmpprhn7p25CJ1SMqGEsGnbryaMVQXbQyNK6iphGSv20YiUWZ3QvH45REchLAmhNKf1CL1e2Q34N2gVfH9-GQ-AjW1tBxgaWEHbBWycx90CcLQGb5VocHBN31nXYmewwIut9g4aETqr8MZKL3ba2jsZLY7RgRFNgJO_OUbzm-vny7tk9nR7f3kxSxTLS5ZUSlKtiaxEURAqtC5NpuK9VZ3XmdFp1AmpUpAAVMk0yw1Ny1rLWiqRG9DpGJ0NvjH3vYfQ8aXrfRsjOStTWhRZVZSROh8o5V0IHgxfe7sSfssp4b8F8vgl3xUY2enAftgGtv-D_HH-MGz8AIVcdY8</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Alonso‐Rodríguez, Ana</creator><creator>Camaño, Jessika</creator><creator>De Los Santos, Eduardo</creator><creator>Rodríguez, Rodolfo</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7742-2250</orcidid></search><sort><creationdate>202301</creationdate><title>Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem</title><author>Alonso‐Rodríguez, Ana ; Camaño, Jessika ; De Los Santos, Eduardo ; Rodríguez, Rodolfo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2572-8cb1dd0b8a6601add7f4c15989594fd38cb0083ebee1cb345f1379db9bca5fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Divergence</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Finite element method</topic><topic>finite elements</topic><topic>Fluid pressure</topic><topic>Fluid-structure interaction</topic><topic>spectral problems</topic><topic>Vibration analysis</topic><topic>vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso‐Rodríguez, Ana</creatorcontrib><creatorcontrib>Camaño, Jessika</creatorcontrib><creatorcontrib>De Los Santos, Eduardo</creatorcontrib><creatorcontrib>Rodríguez, Rodolfo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso‐Rodríguez, Ana</au><au>Camaño, Jessika</au><au>De Los Santos, Eduardo</au><au>Rodríguez, Rodolfo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2023-01</date><risdate>2023</risdate><volume>39</volume><issue>1</issue><spage>163</spage><epage>186</epage><pages>163-186</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this paper, we analyze a divergence‐free finite element method to solve a fluid–structure interaction spectral problem in the three‐dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence‐free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22862</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0001-7742-2250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2023-01, Vol.39 (1), p.163-186
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2731664867
source Wiley Journals
subjects Approximation
Divergence
Eigenvalues
Eigenvectors
Finite element method
finite elements
Fluid pressure
Fluid-structure interaction
spectral problems
Vibration analysis
vibrations
title Divergence‐free finite elements for the numerical solution of a hydroelastic vibration problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence%E2%80%90free%20finite%20elements%20for%20the%20numerical%20solution%20of%20a%20hydroelastic%20vibration%20problem&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Alonso%E2%80%90Rodr%C3%ADguez,%20Ana&rft.date=2023-01&rft.volume=39&rft.issue=1&rft.spage=163&rft.epage=186&rft.pages=163-186&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22862&rft_dat=%3Cproquest_cross%3E2731664867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731664867&rft_id=info:pmid/&rfr_iscdi=true