Symmetry reduction of states II: A non-commutative Positivstellensatz for CPn

We give a non-commutative Positivstellensatz for CPn: The (commutative) ⁎-algebra of polynomials on the real algebraic set CPn with the pointwise product can be realized by phase space reduction as the U(1)-invariant polynomials on C1+n, restricted to the real (2n+1)-sphere inside C1+n, and Schmüdge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2022-09, Vol.649, p.326-353
Hauptverfasser: Schmitt, Philipp, Schötz, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue
container_start_page 326
container_title Linear algebra and its applications
container_volume 649
creator Schmitt, Philipp
Schötz, Matthias
description We give a non-commutative Positivstellensatz for CPn: The (commutative) ⁎-algebra of polynomials on the real algebraic set CPn with the pointwise product can be realized by phase space reduction as the U(1)-invariant polynomials on C1+n, restricted to the real (2n+1)-sphere inside C1+n, and Schmüdgen's Positivstellensatz gives an algebraic description of the real-valued U(1)-invariant polynomials on C1+n that are strictly pointwise positive on the sphere. In analogy to this commutative case, we consider a non-commutative ⁎-algebra of polynomials on C1+n, the Weyl algebra, and give an algebraic description of the real-valued U(1)-invariant polynomials that are positive in certain ⁎-representations on Hilbert spaces of holomorphic sections of line bundles over CPn. It is especially noteworthy that the non-commutative result applies not only to strictly positive, but to all positive (semidefinite) elements. As an application, all ⁎-representations of the quantization of the polynomial ⁎-algebra on CPn, obtained e.g. through phase space reduction or Berezin–Toeplitz quantization, are determined.
doi_str_mv 10.1016/j.laa.2022.05.011
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2731476889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379522001987</els_id><sourcerecordid>2731476889</sourcerecordid><originalsourceid>FETCH-LOGICAL-e165t-ee08404285f4644aa5de72d54b92221e7c9de503b77bdd6bc0d815b0ec6219f53</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOKcfwLeAz603adK0-jSGfwYTB-pzaJNbaGkbTdLB_PR2zKdzOBzOvfwIuWWQMmD5fZf2VZVy4DwFmQJjZ2TBCpUlrJD5OVkAcJFkqpSX5CqEDgCEAr4gbx-HYcDoD9SjnUxs3UhdQ0OsIga62TzQFR3dmBg3DNMctnukOxfa2YSIfY9jqOIvbZyn6914TS6aqg94869L8vX89Ll-TbbvL5v1apsgy2VMEKEQIHghG5ELUVXSouJWirrknDNUprQoIauVqq3NawO2YLIGNDlnZSOzJbk77X579zNhiLpzkx_nk5qrjAmVF0U5tx5PLZxf2bfodTAtjgZt69FEbV2rGegjP93pmZ8-8tMg9cwv-wNs5GSb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731476889</pqid></control><display><type>article</type><title>Symmetry reduction of states II: A non-commutative Positivstellensatz for CPn</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Schmitt, Philipp ; Schötz, Matthias</creator><creatorcontrib>Schmitt, Philipp ; Schötz, Matthias</creatorcontrib><description>We give a non-commutative Positivstellensatz for CPn: The (commutative) ⁎-algebra of polynomials on the real algebraic set CPn with the pointwise product can be realized by phase space reduction as the U(1)-invariant polynomials on C1+n, restricted to the real (2n+1)-sphere inside C1+n, and Schmüdgen's Positivstellensatz gives an algebraic description of the real-valued U(1)-invariant polynomials on C1+n that are strictly pointwise positive on the sphere. In analogy to this commutative case, we consider a non-commutative ⁎-algebra of polynomials on C1+n, the Weyl algebra, and give an algebraic description of the real-valued U(1)-invariant polynomials that are positive in certain ⁎-representations on Hilbert spaces of holomorphic sections of line bundles over CPn. It is especially noteworthy that the non-commutative result applies not only to strictly positive, but to all positive (semidefinite) elements. As an application, all ⁎-representations of the quantization of the polynomial ⁎-algebra on CPn, obtained e.g. through phase space reduction or Berezin–Toeplitz quantization, are determined.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2022.05.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Hilbert space ; Invariants ; Linear algebra ; Mathematical analysis ; Measurement ; Non-commutative -algebra ; Non-strict Positivstellensatz ; Polynomials ; Reduction ; Representations ; Star product ; Symmetry reduction</subject><ispartof>Linear algebra and its applications, 2022-09, Vol.649, p.326-353</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4058-0946 ; 0000-0003-1844-3865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2022.05.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Schmitt, Philipp</creatorcontrib><creatorcontrib>Schötz, Matthias</creatorcontrib><title>Symmetry reduction of states II: A non-commutative Positivstellensatz for CPn</title><title>Linear algebra and its applications</title><description>We give a non-commutative Positivstellensatz for CPn: The (commutative) ⁎-algebra of polynomials on the real algebraic set CPn with the pointwise product can be realized by phase space reduction as the U(1)-invariant polynomials on C1+n, restricted to the real (2n+1)-sphere inside C1+n, and Schmüdgen's Positivstellensatz gives an algebraic description of the real-valued U(1)-invariant polynomials on C1+n that are strictly pointwise positive on the sphere. In analogy to this commutative case, we consider a non-commutative ⁎-algebra of polynomials on C1+n, the Weyl algebra, and give an algebraic description of the real-valued U(1)-invariant polynomials that are positive in certain ⁎-representations on Hilbert spaces of holomorphic sections of line bundles over CPn. It is especially noteworthy that the non-commutative result applies not only to strictly positive, but to all positive (semidefinite) elements. As an application, all ⁎-representations of the quantization of the polynomial ⁎-algebra on CPn, obtained e.g. through phase space reduction or Berezin–Toeplitz quantization, are determined.</description><subject>Algebra</subject><subject>Hilbert space</subject><subject>Invariants</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Non-commutative -algebra</subject><subject>Non-strict Positivstellensatz</subject><subject>Polynomials</subject><subject>Reduction</subject><subject>Representations</subject><subject>Star product</subject><subject>Symmetry reduction</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkF9LwzAUxYMoOKcfwLeAz603adK0-jSGfwYTB-pzaJNbaGkbTdLB_PR2zKdzOBzOvfwIuWWQMmD5fZf2VZVy4DwFmQJjZ2TBCpUlrJD5OVkAcJFkqpSX5CqEDgCEAr4gbx-HYcDoD9SjnUxs3UhdQ0OsIga62TzQFR3dmBg3DNMctnukOxfa2YSIfY9jqOIvbZyn6914TS6aqg94869L8vX89Ll-TbbvL5v1apsgy2VMEKEQIHghG5ELUVXSouJWirrknDNUprQoIauVqq3NawO2YLIGNDlnZSOzJbk77X579zNhiLpzkx_nk5qrjAmVF0U5tx5PLZxf2bfodTAtjgZt69FEbV2rGegjP93pmZ8-8tMg9cwv-wNs5GSb</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Schmitt, Philipp</creator><creator>Schötz, Matthias</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4058-0946</orcidid><orcidid>https://orcid.org/0000-0003-1844-3865</orcidid></search><sort><creationdate>20220915</creationdate><title>Symmetry reduction of states II: A non-commutative Positivstellensatz for CPn</title><author>Schmitt, Philipp ; Schötz, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e165t-ee08404285f4644aa5de72d54b92221e7c9de503b77bdd6bc0d815b0ec6219f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Hilbert space</topic><topic>Invariants</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Non-commutative -algebra</topic><topic>Non-strict Positivstellensatz</topic><topic>Polynomials</topic><topic>Reduction</topic><topic>Representations</topic><topic>Star product</topic><topic>Symmetry reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Philipp</creatorcontrib><creatorcontrib>Schötz, Matthias</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitt, Philipp</au><au>Schötz, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry reduction of states II: A non-commutative Positivstellensatz for CPn</atitle><jtitle>Linear algebra and its applications</jtitle><date>2022-09-15</date><risdate>2022</risdate><volume>649</volume><spage>326</spage><epage>353</epage><pages>326-353</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>We give a non-commutative Positivstellensatz for CPn: The (commutative) ⁎-algebra of polynomials on the real algebraic set CPn with the pointwise product can be realized by phase space reduction as the U(1)-invariant polynomials on C1+n, restricted to the real (2n+1)-sphere inside C1+n, and Schmüdgen's Positivstellensatz gives an algebraic description of the real-valued U(1)-invariant polynomials on C1+n that are strictly pointwise positive on the sphere. In analogy to this commutative case, we consider a non-commutative ⁎-algebra of polynomials on C1+n, the Weyl algebra, and give an algebraic description of the real-valued U(1)-invariant polynomials that are positive in certain ⁎-representations on Hilbert spaces of holomorphic sections of line bundles over CPn. It is especially noteworthy that the non-commutative result applies not only to strictly positive, but to all positive (semidefinite) elements. As an application, all ⁎-representations of the quantization of the polynomial ⁎-algebra on CPn, obtained e.g. through phase space reduction or Berezin–Toeplitz quantization, are determined.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2022.05.011</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-4058-0946</orcidid><orcidid>https://orcid.org/0000-0003-1844-3865</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2022-09, Vol.649, p.326-353
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2731476889
source Elsevier ScienceDirect Journals Complete
subjects Algebra
Hilbert space
Invariants
Linear algebra
Mathematical analysis
Measurement
Non-commutative -algebra
Non-strict Positivstellensatz
Polynomials
Reduction
Representations
Star product
Symmetry reduction
title Symmetry reduction of states II: A non-commutative Positivstellensatz for CPn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20reduction%20of%20states%20II:%20A%20non-commutative%20Positivstellensatz%20for%20CPn&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Schmitt,%20Philipp&rft.date=2022-09-15&rft.volume=649&rft.spage=326&rft.epage=353&rft.pages=326-353&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2022.05.011&rft_dat=%3Cproquest_elsev%3E2731476889%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731476889&rft_id=info:pmid/&rft_els_id=S0024379522001987&rfr_iscdi=true