Locating eigenvalues of quadratic matrix polynomials

The location of the roots of a quadratic scalar polynomial may be identified from its coefficients. This paper shows that when the coefficients of the polynomial are square matrices, then appropriate generalizations of some of these statements hold for the eigenvalues of the resulting quadratic matr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2022-09, Vol.649, p.452-490
Hauptverfasser: Roy, Nandita, Bora, Shreemayee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 490
container_issue
container_start_page 452
container_title Linear algebra and its applications
container_volume 649
creator Roy, Nandita
Bora, Shreemayee
description The location of the roots of a quadratic scalar polynomial may be identified from its coefficients. This paper shows that when the coefficients of the polynomial are square matrices, then appropriate generalizations of some of these statements hold for the eigenvalues of the resulting quadratic matrix polynomial. The locations of the eigenvalues are described with respect to the imaginary axis, the unit circle or the real line. The results lead to upper bounds on some important distances associated with quadratic matrix polynomials. The principal tool used is an eigenvalue localization technique using block Geršgorin sets applied to certain linearizations of these polynomials that come from well known vector spaces. New bounds on the eigenvalues of the matrix polynomial arising from these localizations are also presented.
doi_str_mv 10.1016/j.laa.2022.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731476502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379522002014</els_id><sourcerecordid>2731476502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-99df8e58ea40a73418e603c7627871f15784e07c84f5f863e748812e070bd7493</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuC510n_zZZPEnRKhS86DnE7GzJst20ybbYb29KPXt6MPPezONHyD2FigKtH_tqsLZiwFgFsgIqLsiMasVLqmV9SWYATJRcNfKa3KTUA4BQwGZErIKzkx_XBfo1jgc77DEVoSt2e9vGvHHFxk7R_xTbMBzHsPF2SLfkqsuCd386J1-vL5-Lt3L1sXxfPK9Kx0BNZdO0nUap0QqwiguqsQbuVM2UVrSjUmmBoJwWnex0zVEJrSnLI_hulWj4nDyc725j2OVek-nDPo75pWGKU6FqCSy76NnlYkgpYme20W9sPBoK5gTH9CbDMSc4BqTJcHLm6ZzBXP_gMZrkPI4OWx_RTaYN_p_0L1dVaqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731476502</pqid></control><display><type>article</type><title>Locating eigenvalues of quadratic matrix polynomials</title><source>Access via ScienceDirect (Elsevier)</source><creator>Roy, Nandita ; Bora, Shreemayee</creator><creatorcontrib>Roy, Nandita ; Bora, Shreemayee</creatorcontrib><description>The location of the roots of a quadratic scalar polynomial may be identified from its coefficients. This paper shows that when the coefficients of the polynomial are square matrices, then appropriate generalizations of some of these statements hold for the eigenvalues of the resulting quadratic matrix polynomial. The locations of the eigenvalues are described with respect to the imaginary axis, the unit circle or the real line. The results lead to upper bounds on some important distances associated with quadratic matrix polynomials. The principal tool used is an eigenvalue localization technique using block Geršgorin sets applied to certain linearizations of these polynomials that come from well known vector spaces. New bounds on the eigenvalues of the matrix polynomial arising from these localizations are also presented.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2022.05.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Block Geršgorin sets ; Eigenvalue localizations ; Eigenvalues ; Linear algebra ; Mathematical analysis ; Polynomials ; Quadratic matrix polynomials ; Structured quadratic matrix polynomials ; Upper bounds ; Vector spaces</subject><ispartof>Linear algebra and its applications, 2022-09, Vol.649, p.452-490</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c207t-99df8e58ea40a73418e603c7627871f15784e07c84f5f863e748812e070bd7493</cites><orcidid>0000-0002-0021-1591 ; 0000-0001-9410-9944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2022.05.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Roy, Nandita</creatorcontrib><creatorcontrib>Bora, Shreemayee</creatorcontrib><title>Locating eigenvalues of quadratic matrix polynomials</title><title>Linear algebra and its applications</title><description>The location of the roots of a quadratic scalar polynomial may be identified from its coefficients. This paper shows that when the coefficients of the polynomial are square matrices, then appropriate generalizations of some of these statements hold for the eigenvalues of the resulting quadratic matrix polynomial. The locations of the eigenvalues are described with respect to the imaginary axis, the unit circle or the real line. The results lead to upper bounds on some important distances associated with quadratic matrix polynomials. The principal tool used is an eigenvalue localization technique using block Geršgorin sets applied to certain linearizations of these polynomials that come from well known vector spaces. New bounds on the eigenvalues of the matrix polynomial arising from these localizations are also presented.</description><subject>Block Geršgorin sets</subject><subject>Eigenvalue localizations</subject><subject>Eigenvalues</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Quadratic matrix polynomials</subject><subject>Structured quadratic matrix polynomials</subject><subject>Upper bounds</subject><subject>Vector spaces</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuC510n_zZZPEnRKhS86DnE7GzJst20ybbYb29KPXt6MPPezONHyD2FigKtH_tqsLZiwFgFsgIqLsiMasVLqmV9SWYATJRcNfKa3KTUA4BQwGZErIKzkx_XBfo1jgc77DEVoSt2e9vGvHHFxk7R_xTbMBzHsPF2SLfkqsuCd386J1-vL5-Lt3L1sXxfPK9Kx0BNZdO0nUap0QqwiguqsQbuVM2UVrSjUmmBoJwWnex0zVEJrSnLI_hulWj4nDyc725j2OVek-nDPo75pWGKU6FqCSy76NnlYkgpYme20W9sPBoK5gTH9CbDMSc4BqTJcHLm6ZzBXP_gMZrkPI4OWx_RTaYN_p_0L1dVaqU</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Roy, Nandita</creator><creator>Bora, Shreemayee</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0021-1591</orcidid><orcidid>https://orcid.org/0000-0001-9410-9944</orcidid></search><sort><creationdate>20220915</creationdate><title>Locating eigenvalues of quadratic matrix polynomials</title><author>Roy, Nandita ; Bora, Shreemayee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-99df8e58ea40a73418e603c7627871f15784e07c84f5f863e748812e070bd7493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Block Geršgorin sets</topic><topic>Eigenvalue localizations</topic><topic>Eigenvalues</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Quadratic matrix polynomials</topic><topic>Structured quadratic matrix polynomials</topic><topic>Upper bounds</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Nandita</creatorcontrib><creatorcontrib>Bora, Shreemayee</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Nandita</au><au>Bora, Shreemayee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locating eigenvalues of quadratic matrix polynomials</atitle><jtitle>Linear algebra and its applications</jtitle><date>2022-09-15</date><risdate>2022</risdate><volume>649</volume><spage>452</spage><epage>490</epage><pages>452-490</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>The location of the roots of a quadratic scalar polynomial may be identified from its coefficients. This paper shows that when the coefficients of the polynomial are square matrices, then appropriate generalizations of some of these statements hold for the eigenvalues of the resulting quadratic matrix polynomial. The locations of the eigenvalues are described with respect to the imaginary axis, the unit circle or the real line. The results lead to upper bounds on some important distances associated with quadratic matrix polynomials. The principal tool used is an eigenvalue localization technique using block Geršgorin sets applied to certain linearizations of these polynomials that come from well known vector spaces. New bounds on the eigenvalues of the matrix polynomial arising from these localizations are also presented.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2022.05.014</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-0021-1591</orcidid><orcidid>https://orcid.org/0000-0001-9410-9944</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2022-09, Vol.649, p.452-490
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2731476502
source Access via ScienceDirect (Elsevier)
subjects Block Geršgorin sets
Eigenvalue localizations
Eigenvalues
Linear algebra
Mathematical analysis
Polynomials
Quadratic matrix polynomials
Structured quadratic matrix polynomials
Upper bounds
Vector spaces
title Locating eigenvalues of quadratic matrix polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locating%20eigenvalues%20of%20quadratic%20matrix%20polynomials&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Roy,%20Nandita&rft.date=2022-09-15&rft.volume=649&rft.spage=452&rft.epage=490&rft.pages=452-490&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2022.05.014&rft_dat=%3Cproquest_cross%3E2731476502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731476502&rft_id=info:pmid/&rft_els_id=S0024379522002014&rfr_iscdi=true