Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks

E-sports live streaming video is rapidly coming into people’s lives. High-quality video is an essential factor affecting users’ perception. This paper presents conventional network traffic analysis methods for traffic intensity selection as a feature combined with deep learning classifiers for strea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2022-10, Vol.56 (5), p.455-466
Hauptverfasser: Chen, T., Grabs, E., Petersons, E., Efrosinin, D., Ipatovs, A., Bogdanovs, N., Rjazanovs, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 5
container_start_page 455
container_title Automatic control and computer sciences
container_volume 56
creator Chen, T.
Grabs, E.
Petersons, E.
Efrosinin, D.
Ipatovs, A.
Bogdanovs, N.
Rjazanovs, D.
description E-sports live streaming video is rapidly coming into people’s lives. High-quality video is an essential factor affecting users’ perception. This paper presents conventional network traffic analysis methods for traffic intensity selection as a feature combined with deep learning classifiers for streaming videos classification with different resolutions and frame rates per second. According to the experimental results, the convolution neural networks showed the best results in multiclass classification with accuracy as high as 97%. This superiority can help E-sports operators to improve the quality of live streaming videos and provide differentiated services for their users. Furthermore, the article describes research on the performance of various deep learning classifiers with different hyperparameters. The number of filters in convolution layers and training batch size can significantly affect classification performance according to testing results. It is still necessary to avoid hyperparameters’ designated values significantly influencing the classification results.
doi_str_mv 10.3103/S0146411622050029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731446858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731446858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-d16f0b68065ef7722adc05236be6b1bb0ac4ec6646554dce122bce5604db54f93</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz9WbNMmyRy3-g6rIVHyRkqbpyOyamaSTfXtbJ_ggPt3LPb9zuByEjgmcpgTSsxkQJhghglLgAHS6g0aEc5kQkK-7aDTIyaDvo4MQFgC9JsUIvd11TbS6USHg3K4NnkVv1NK2c_xiK-PwY6caGzc4GxBbW62idS2-UMFUuF8y165d0w1H1eB70_nvET-dfw-HaK9WTTBHP3OMnq8un7KbJH-4vs3O80RTIWNSEVFDKSQIburJhFJVaeA0FaURJSlLUJoZLQQTnLNKG0JpqQ0XwKqSs3qajtHJNnfl3UdnQiwWrvP9Q6Ggk5QwJiSXPUW2lPYuBG_qYuXtUvlNQaAYWiz-tNh76NYTeradG_-b_L_pCz5ydIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731446858</pqid></control><display><type>article</type><title>Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks</title><source>SpringerNature Journals</source><creator>Chen, T. ; Grabs, E. ; Petersons, E. ; Efrosinin, D. ; Ipatovs, A. ; Bogdanovs, N. ; Rjazanovs, D.</creator><creatorcontrib>Chen, T. ; Grabs, E. ; Petersons, E. ; Efrosinin, D. ; Ipatovs, A. ; Bogdanovs, N. ; Rjazanovs, D.</creatorcontrib><description>E-sports live streaming video is rapidly coming into people’s lives. High-quality video is an essential factor affecting users’ perception. This paper presents conventional network traffic analysis methods for traffic intensity selection as a feature combined with deep learning classifiers for streaming videos classification with different resolutions and frame rates per second. According to the experimental results, the convolution neural networks showed the best results in multiclass classification with accuracy as high as 97%. This superiority can help E-sports operators to improve the quality of live streaming videos and provide differentiated services for their users. Furthermore, the article describes research on the performance of various deep learning classifiers with different hyperparameters. The number of filters in convolution layers and training batch size can significantly affect classification performance according to testing results. It is still necessary to avoid hyperparameters’ designated values significantly influencing the classification results.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411622050029</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Classification ; Classifiers ; Communications traffic ; Computer Science ; Control Structures and Microprogramming ; Deep learning ; Machine learning ; Sports ; Traffic analysis ; Video</subject><ispartof>Automatic control and computer sciences, 2022-10, Vol.56 (5), p.455-466</ispartof><rights>Allerton Press, Inc. 2022. ISSN 0146-4116, Automatic Control and Computer Sciences, 2022, Vol. 56, No. 5, pp. 455–466. © Allerton Press, Inc., 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-d16f0b68065ef7722adc05236be6b1bb0ac4ec6646554dce122bce5604db54f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411622050029$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411622050029$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, T.</creatorcontrib><creatorcontrib>Grabs, E.</creatorcontrib><creatorcontrib>Petersons, E.</creatorcontrib><creatorcontrib>Efrosinin, D.</creatorcontrib><creatorcontrib>Ipatovs, A.</creatorcontrib><creatorcontrib>Bogdanovs, N.</creatorcontrib><creatorcontrib>Rjazanovs, D.</creatorcontrib><title>Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>E-sports live streaming video is rapidly coming into people’s lives. High-quality video is an essential factor affecting users’ perception. This paper presents conventional network traffic analysis methods for traffic intensity selection as a feature combined with deep learning classifiers for streaming videos classification with different resolutions and frame rates per second. According to the experimental results, the convolution neural networks showed the best results in multiclass classification with accuracy as high as 97%. This superiority can help E-sports operators to improve the quality of live streaming videos and provide differentiated services for their users. Furthermore, the article describes research on the performance of various deep learning classifiers with different hyperparameters. The number of filters in convolution layers and training batch size can significantly affect classification performance according to testing results. It is still necessary to avoid hyperparameters’ designated values significantly influencing the classification results.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Communications traffic</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Sports</subject><subject>Traffic analysis</subject><subject>Video</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz9WbNMmyRy3-g6rIVHyRkqbpyOyamaSTfXtbJ_ggPt3LPb9zuByEjgmcpgTSsxkQJhghglLgAHS6g0aEc5kQkK-7aDTIyaDvo4MQFgC9JsUIvd11TbS6USHg3K4NnkVv1NK2c_xiK-PwY6caGzc4GxBbW62idS2-UMFUuF8y165d0w1H1eB70_nvET-dfw-HaK9WTTBHP3OMnq8un7KbJH-4vs3O80RTIWNSEVFDKSQIburJhFJVaeA0FaURJSlLUJoZLQQTnLNKG0JpqQ0XwKqSs3qajtHJNnfl3UdnQiwWrvP9Q6Ggk5QwJiSXPUW2lPYuBG_qYuXtUvlNQaAYWiz-tNh76NYTeradG_-b_L_pCz5ydIE</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Chen, T.</creator><creator>Grabs, E.</creator><creator>Petersons, E.</creator><creator>Efrosinin, D.</creator><creator>Ipatovs, A.</creator><creator>Bogdanovs, N.</creator><creator>Rjazanovs, D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks</title><author>Chen, T. ; Grabs, E. ; Petersons, E. ; Efrosinin, D. ; Ipatovs, A. ; Bogdanovs, N. ; Rjazanovs, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-d16f0b68065ef7722adc05236be6b1bb0ac4ec6646554dce122bce5604db54f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Communications traffic</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Sports</topic><topic>Traffic analysis</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, T.</creatorcontrib><creatorcontrib>Grabs, E.</creatorcontrib><creatorcontrib>Petersons, E.</creatorcontrib><creatorcontrib>Efrosinin, D.</creatorcontrib><creatorcontrib>Ipatovs, A.</creatorcontrib><creatorcontrib>Bogdanovs, N.</creatorcontrib><creatorcontrib>Rjazanovs, D.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, T.</au><au>Grabs, E.</au><au>Petersons, E.</au><au>Efrosinin, D.</au><au>Ipatovs, A.</au><au>Bogdanovs, N.</au><au>Rjazanovs, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>56</volume><issue>5</issue><spage>455</spage><epage>466</epage><pages>455-466</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>E-sports live streaming video is rapidly coming into people’s lives. High-quality video is an essential factor affecting users’ perception. This paper presents conventional network traffic analysis methods for traffic intensity selection as a feature combined with deep learning classifiers for streaming videos classification with different resolutions and frame rates per second. According to the experimental results, the convolution neural networks showed the best results in multiclass classification with accuracy as high as 97%. This superiority can help E-sports operators to improve the quality of live streaming videos and provide differentiated services for their users. Furthermore, the article describes research on the performance of various deep learning classifiers with different hyperparameters. The number of filters in convolution layers and training batch size can significantly affect classification performance according to testing results. It is still necessary to avoid hyperparameters’ designated values significantly influencing the classification results.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411622050029</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4116
ispartof Automatic control and computer sciences, 2022-10, Vol.56 (5), p.455-466
issn 0146-4116
1558-108X
language eng
recordid cdi_proquest_journals_2731446858
source SpringerNature Journals
subjects Artificial neural networks
Classification
Classifiers
Communications traffic
Computer Science
Control Structures and Microprogramming
Deep learning
Machine learning
Sports
Traffic analysis
Video
title Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclass%20Live%20Streaming%20Video%20Quality%20Classification%20Based%20on%20Convolutional%20Neural%20Networks&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Chen,%20T.&rft.date=2022-10-01&rft.volume=56&rft.issue=5&rft.spage=455&rft.epage=466&rft.pages=455-466&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411622050029&rft_dat=%3Cproquest_cross%3E2731446858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731446858&rft_id=info:pmid/&rfr_iscdi=true