Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks
E-sports live streaming video is rapidly coming into people’s lives. High-quality video is an essential factor affecting users’ perception. This paper presents conventional network traffic analysis methods for traffic intensity selection as a feature combined with deep learning classifiers for strea...
Gespeichert in:
Veröffentlicht in: | Automatic control and computer sciences 2022-10, Vol.56 (5), p.455-466 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 5 |
container_start_page | 455 |
container_title | Automatic control and computer sciences |
container_volume | 56 |
creator | Chen, T. Grabs, E. Petersons, E. Efrosinin, D. Ipatovs, A. Bogdanovs, N. Rjazanovs, D. |
description | E-sports live streaming video is rapidly coming into people’s lives. High-quality video is an essential factor affecting users’ perception. This paper presents conventional network traffic analysis methods for traffic intensity selection as a feature combined with deep learning classifiers for streaming videos classification with different resolutions and frame rates per second. According to the experimental results, the convolution neural networks showed the best results in multiclass classification with accuracy as high as 97%. This superiority can help E-sports operators to improve the quality of live streaming videos and provide differentiated services for their users. Furthermore, the article describes research on the performance of various deep learning classifiers with different hyperparameters. The number of filters in convolution layers and training batch size can significantly affect classification performance according to testing results. It is still necessary to avoid hyperparameters’ designated values significantly influencing the classification results. |
doi_str_mv | 10.3103/S0146411622050029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731446858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731446858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-d16f0b68065ef7722adc05236be6b1bb0ac4ec6646554dce122bce5604db54f93</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz9WbNMmyRy3-g6rIVHyRkqbpyOyamaSTfXtbJ_ggPt3LPb9zuByEjgmcpgTSsxkQJhghglLgAHS6g0aEc5kQkK-7aDTIyaDvo4MQFgC9JsUIvd11TbS6USHg3K4NnkVv1NK2c_xiK-PwY6caGzc4GxBbW62idS2-UMFUuF8y165d0w1H1eB70_nvET-dfw-HaK9WTTBHP3OMnq8un7KbJH-4vs3O80RTIWNSEVFDKSQIburJhFJVaeA0FaURJSlLUJoZLQQTnLNKG0JpqQ0XwKqSs3qajtHJNnfl3UdnQiwWrvP9Q6Ggk5QwJiSXPUW2lPYuBG_qYuXtUvlNQaAYWiz-tNh76NYTeradG_-b_L_pCz5ydIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731446858</pqid></control><display><type>article</type><title>Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks</title><source>SpringerNature Journals</source><creator>Chen, T. ; Grabs, E. ; Petersons, E. ; Efrosinin, D. ; Ipatovs, A. ; Bogdanovs, N. ; Rjazanovs, D.</creator><creatorcontrib>Chen, T. ; Grabs, E. ; Petersons, E. ; Efrosinin, D. ; Ipatovs, A. ; Bogdanovs, N. ; Rjazanovs, D.</creatorcontrib><description>E-sports live streaming video is rapidly coming into people’s lives. High-quality video is an essential factor affecting users’ perception. This paper presents conventional network traffic analysis methods for traffic intensity selection as a feature combined with deep learning classifiers for streaming videos classification with different resolutions and frame rates per second. According to the experimental results, the convolution neural networks showed the best results in multiclass classification with accuracy as high as 97%. This superiority can help E-sports operators to improve the quality of live streaming videos and provide differentiated services for their users. Furthermore, the article describes research on the performance of various deep learning classifiers with different hyperparameters. The number of filters in convolution layers and training batch size can significantly affect classification performance according to testing results. It is still necessary to avoid hyperparameters’ designated values significantly influencing the classification results.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411622050029</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Classification ; Classifiers ; Communications traffic ; Computer Science ; Control Structures and Microprogramming ; Deep learning ; Machine learning ; Sports ; Traffic analysis ; Video</subject><ispartof>Automatic control and computer sciences, 2022-10, Vol.56 (5), p.455-466</ispartof><rights>Allerton Press, Inc. 2022. ISSN 0146-4116, Automatic Control and Computer Sciences, 2022, Vol. 56, No. 5, pp. 455–466. © Allerton Press, Inc., 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-d16f0b68065ef7722adc05236be6b1bb0ac4ec6646554dce122bce5604db54f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411622050029$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411622050029$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, T.</creatorcontrib><creatorcontrib>Grabs, E.</creatorcontrib><creatorcontrib>Petersons, E.</creatorcontrib><creatorcontrib>Efrosinin, D.</creatorcontrib><creatorcontrib>Ipatovs, A.</creatorcontrib><creatorcontrib>Bogdanovs, N.</creatorcontrib><creatorcontrib>Rjazanovs, D.</creatorcontrib><title>Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>E-sports live streaming video is rapidly coming into people’s lives. High-quality video is an essential factor affecting users’ perception. This paper presents conventional network traffic analysis methods for traffic intensity selection as a feature combined with deep learning classifiers for streaming videos classification with different resolutions and frame rates per second. According to the experimental results, the convolution neural networks showed the best results in multiclass classification with accuracy as high as 97%. This superiority can help E-sports operators to improve the quality of live streaming videos and provide differentiated services for their users. Furthermore, the article describes research on the performance of various deep learning classifiers with different hyperparameters. The number of filters in convolution layers and training batch size can significantly affect classification performance according to testing results. It is still necessary to avoid hyperparameters’ designated values significantly influencing the classification results.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Communications traffic</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Sports</subject><subject>Traffic analysis</subject><subject>Video</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz9WbNMmyRy3-g6rIVHyRkqbpyOyamaSTfXtbJ_ggPt3LPb9zuByEjgmcpgTSsxkQJhghglLgAHS6g0aEc5kQkK-7aDTIyaDvo4MQFgC9JsUIvd11TbS6USHg3K4NnkVv1NK2c_xiK-PwY6caGzc4GxBbW62idS2-UMFUuF8y165d0w1H1eB70_nvET-dfw-HaK9WTTBHP3OMnq8un7KbJH-4vs3O80RTIWNSEVFDKSQIburJhFJVaeA0FaURJSlLUJoZLQQTnLNKG0JpqQ0XwKqSs3qajtHJNnfl3UdnQiwWrvP9Q6Ggk5QwJiSXPUW2lPYuBG_qYuXtUvlNQaAYWiz-tNh76NYTeradG_-b_L_pCz5ydIE</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Chen, T.</creator><creator>Grabs, E.</creator><creator>Petersons, E.</creator><creator>Efrosinin, D.</creator><creator>Ipatovs, A.</creator><creator>Bogdanovs, N.</creator><creator>Rjazanovs, D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks</title><author>Chen, T. ; Grabs, E. ; Petersons, E. ; Efrosinin, D. ; Ipatovs, A. ; Bogdanovs, N. ; Rjazanovs, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-d16f0b68065ef7722adc05236be6b1bb0ac4ec6646554dce122bce5604db54f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Communications traffic</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Sports</topic><topic>Traffic analysis</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, T.</creatorcontrib><creatorcontrib>Grabs, E.</creatorcontrib><creatorcontrib>Petersons, E.</creatorcontrib><creatorcontrib>Efrosinin, D.</creatorcontrib><creatorcontrib>Ipatovs, A.</creatorcontrib><creatorcontrib>Bogdanovs, N.</creatorcontrib><creatorcontrib>Rjazanovs, D.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, T.</au><au>Grabs, E.</au><au>Petersons, E.</au><au>Efrosinin, D.</au><au>Ipatovs, A.</au><au>Bogdanovs, N.</au><au>Rjazanovs, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>56</volume><issue>5</issue><spage>455</spage><epage>466</epage><pages>455-466</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>E-sports live streaming video is rapidly coming into people’s lives. High-quality video is an essential factor affecting users’ perception. This paper presents conventional network traffic analysis methods for traffic intensity selection as a feature combined with deep learning classifiers for streaming videos classification with different resolutions and frame rates per second. According to the experimental results, the convolution neural networks showed the best results in multiclass classification with accuracy as high as 97%. This superiority can help E-sports operators to improve the quality of live streaming videos and provide differentiated services for their users. Furthermore, the article describes research on the performance of various deep learning classifiers with different hyperparameters. The number of filters in convolution layers and training batch size can significantly affect classification performance according to testing results. It is still necessary to avoid hyperparameters’ designated values significantly influencing the classification results.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411622050029</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-4116 |
ispartof | Automatic control and computer sciences, 2022-10, Vol.56 (5), p.455-466 |
issn | 0146-4116 1558-108X |
language | eng |
recordid | cdi_proquest_journals_2731446858 |
source | SpringerNature Journals |
subjects | Artificial neural networks Classification Classifiers Communications traffic Computer Science Control Structures and Microprogramming Deep learning Machine learning Sports Traffic analysis Video |
title | Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclass%20Live%20Streaming%20Video%20Quality%20Classification%20Based%20on%20Convolutional%20Neural%20Networks&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Chen,%20T.&rft.date=2022-10-01&rft.volume=56&rft.issue=5&rft.spage=455&rft.epage=466&rft.pages=455-466&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411622050029&rft_dat=%3Cproquest_cross%3E2731446858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731446858&rft_id=info:pmid/&rfr_iscdi=true |