Effect of Non-uniform Stiffness on Tensile Avalanche Process of Fibrous Materials

In order to analyze the effect of non-uniform stiffness in natural fibrous materials or artificial fiber-reinforced materials on the tensile avalanche process, the extended fiber bundle model with both random Young’s modulus and random fracture threshold is constructed. It is assumed that the Young’...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2023, Vol.190 (1), Article 11
Hauptverfasser: Hao, Da-Peng, Xun, Zhi-Peng, Xia, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of statistical physics
container_volume 190
creator Hao, Da-Peng
Xun, Zhi-Peng
Xia, Hui
description In order to analyze the effect of non-uniform stiffness in natural fibrous materials or artificial fiber-reinforced materials on the tensile avalanche process, the extended fiber bundle model with both random Young’s modulus and random fracture threshold is constructed. It is assumed that the Young’s modulus conforms to the power law distribution in the range between E min and 1; the minimum Young’s modulus E min and the power law exponent α are the two key parameters. The tensile fracture properties of the model were analyzed by analytical approximation and numerical simulation methods. During quasi-static loading condition, the minimum Young’s modulus E min , which affects the distribution range and distribution form of Young’s modulus, has a monotonous impact on the mechanical properties of the model, while the power law exponent α , which affects the inhomogeneity of Young’s modulus distribution, has a more complex effect on fracture mechanical properties and the fracture process.
doi_str_mv 10.1007/s10955-022-03021-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2731446577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724954808</galeid><sourcerecordid>A724954808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-8471c00d5d10d16e4e3a862b381ab73dc5230afe3d7a645fc047452c7ba2af1c3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYj-AU9NPC9Ov7a7R0JATfAr4rkp3RaXQIvtYuK_t7Am3swc5jDvM_POi9A1gREBkLeJQC1EAZQWwICSgp6gARGSFnVJ2CkawGHEJRHn6CKlNQDUVS0G6HXqnDUdDg4_BV_sfetC3OK3rnXO25Rw8HhhfWo3Fo-_9EZ782HxSwzmOHR41i5j2Cf8qDsbW71Jl-jM5WavfvsQvc-mi8l9MX--e5iM54WhrO6KKpsxAI1oCDSktNwyXZV0ySqil5I1RlAG2lnWSF1y4QxwyQU1cqmpdsSwIbrp9-5i-Nzb1Kl12EefTyoqGeG8FFJm1ahXrfTGqta70EVtcjV225rgrcufqbGkvBa8gioDtAdMDClF69QutlsdvxUBdcha9VmrHKg6Zq1ohlgPpSz2Kxv_vPxD_QCjUICK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731446577</pqid></control><display><type>article</type><title>Effect of Non-uniform Stiffness on Tensile Avalanche Process of Fibrous Materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Hao, Da-Peng ; Xun, Zhi-Peng ; Xia, Hui</creator><creatorcontrib>Hao, Da-Peng ; Xun, Zhi-Peng ; Xia, Hui</creatorcontrib><description>In order to analyze the effect of non-uniform stiffness in natural fibrous materials or artificial fiber-reinforced materials on the tensile avalanche process, the extended fiber bundle model with both random Young’s modulus and random fracture threshold is constructed. It is assumed that the Young’s modulus conforms to the power law distribution in the range between E min and 1; the minimum Young’s modulus E min and the power law exponent α are the two key parameters. The tensile fracture properties of the model were analyzed by analytical approximation and numerical simulation methods. During quasi-static loading condition, the minimum Young’s modulus E min , which affects the distribution range and distribution form of Young’s modulus, has a monotonous impact on the mechanical properties of the model, while the power law exponent α , which affects the inhomogeneity of Young’s modulus distribution, has a more complex effect on fracture mechanical properties and the fracture process.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-022-03021-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Avalanches ; Fiber reinforced materials ; Inhomogeneity ; Mathematical and Computational Physics ; Mathematical models ; Mechanical properties ; Modulus of elasticity ; Numerical analysis ; Numerical methods ; Physical Chemistry ; Physics ; Physics and Astronomy ; Power law ; Quantum Physics ; Simulation methods ; Statistical Physics and Dynamical Systems ; Stiffness ; Theoretical</subject><ispartof>Journal of statistical physics, 2023, Vol.190 (1), Article 11</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-8471c00d5d10d16e4e3a862b381ab73dc5230afe3d7a645fc047452c7ba2af1c3</cites><orcidid>0000-0002-1705-1117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-022-03021-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-022-03021-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hao, Da-Peng</creatorcontrib><creatorcontrib>Xun, Zhi-Peng</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><title>Effect of Non-uniform Stiffness on Tensile Avalanche Process of Fibrous Materials</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>In order to analyze the effect of non-uniform stiffness in natural fibrous materials or artificial fiber-reinforced materials on the tensile avalanche process, the extended fiber bundle model with both random Young’s modulus and random fracture threshold is constructed. It is assumed that the Young’s modulus conforms to the power law distribution in the range between E min and 1; the minimum Young’s modulus E min and the power law exponent α are the two key parameters. The tensile fracture properties of the model were analyzed by analytical approximation and numerical simulation methods. During quasi-static loading condition, the minimum Young’s modulus E min , which affects the distribution range and distribution form of Young’s modulus, has a monotonous impact on the mechanical properties of the model, while the power law exponent α , which affects the inhomogeneity of Young’s modulus distribution, has a more complex effect on fracture mechanical properties and the fracture process.</description><subject>Analysis</subject><subject>Avalanches</subject><subject>Fiber reinforced materials</subject><subject>Inhomogeneity</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power law</subject><subject>Quantum Physics</subject><subject>Simulation methods</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Stiffness</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEQhhujiYj-AU9NPC9Ov7a7R0JATfAr4rkp3RaXQIvtYuK_t7Am3swc5jDvM_POi9A1gREBkLeJQC1EAZQWwICSgp6gARGSFnVJ2CkawGHEJRHn6CKlNQDUVS0G6HXqnDUdDg4_BV_sfetC3OK3rnXO25Rw8HhhfWo3Fo-_9EZ782HxSwzmOHR41i5j2Cf8qDsbW71Jl-jM5WavfvsQvc-mi8l9MX--e5iM54WhrO6KKpsxAI1oCDSktNwyXZV0ySqil5I1RlAG2lnWSF1y4QxwyQU1cqmpdsSwIbrp9-5i-Nzb1Kl12EefTyoqGeG8FFJm1ahXrfTGqta70EVtcjV225rgrcufqbGkvBa8gioDtAdMDClF69QutlsdvxUBdcha9VmrHKg6Zq1ohlgPpSz2Kxv_vPxD_QCjUICK</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Hao, Da-Peng</creator><creator>Xun, Zhi-Peng</creator><creator>Xia, Hui</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1705-1117</orcidid></search><sort><creationdate>2023</creationdate><title>Effect of Non-uniform Stiffness on Tensile Avalanche Process of Fibrous Materials</title><author>Hao, Da-Peng ; Xun, Zhi-Peng ; Xia, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-8471c00d5d10d16e4e3a862b381ab73dc5230afe3d7a645fc047452c7ba2af1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Avalanches</topic><topic>Fiber reinforced materials</topic><topic>Inhomogeneity</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power law</topic><topic>Quantum Physics</topic><topic>Simulation methods</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Stiffness</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Da-Peng</creatorcontrib><creatorcontrib>Xun, Zhi-Peng</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Da-Peng</au><au>Xun, Zhi-Peng</au><au>Xia, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Non-uniform Stiffness on Tensile Avalanche Process of Fibrous Materials</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2023</date><risdate>2023</risdate><volume>190</volume><issue>1</issue><artnum>11</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>In order to analyze the effect of non-uniform stiffness in natural fibrous materials or artificial fiber-reinforced materials on the tensile avalanche process, the extended fiber bundle model with both random Young’s modulus and random fracture threshold is constructed. It is assumed that the Young’s modulus conforms to the power law distribution in the range between E min and 1; the minimum Young’s modulus E min and the power law exponent α are the two key parameters. The tensile fracture properties of the model were analyzed by analytical approximation and numerical simulation methods. During quasi-static loading condition, the minimum Young’s modulus E min , which affects the distribution range and distribution form of Young’s modulus, has a monotonous impact on the mechanical properties of the model, while the power law exponent α , which affects the inhomogeneity of Young’s modulus distribution, has a more complex effect on fracture mechanical properties and the fracture process.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-022-03021-2</doi><orcidid>https://orcid.org/0000-0002-1705-1117</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2023, Vol.190 (1), Article 11
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2731446577
source Springer Nature - Complete Springer Journals
subjects Analysis
Avalanches
Fiber reinforced materials
Inhomogeneity
Mathematical and Computational Physics
Mathematical models
Mechanical properties
Modulus of elasticity
Numerical analysis
Numerical methods
Physical Chemistry
Physics
Physics and Astronomy
Power law
Quantum Physics
Simulation methods
Statistical Physics and Dynamical Systems
Stiffness
Theoretical
title Effect of Non-uniform Stiffness on Tensile Avalanche Process of Fibrous Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Non-uniform%20Stiffness%20on%20Tensile%20Avalanche%20Process%20of%20Fibrous%20Materials&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Hao,%20Da-Peng&rft.date=2023&rft.volume=190&rft.issue=1&rft.artnum=11&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-022-03021-2&rft_dat=%3Cgale_proqu%3EA724954808%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731446577&rft_id=info:pmid/&rft_galeid=A724954808&rfr_iscdi=true