Multifunctionality of Li2SrNb2O7: Memristivity, Tunable Rectification, Ferroelasticity, and Ferroelectricity
Layered Li2SrNb2O7, an inorganic oxide in its bulk single‐crystalline form, is experimentally demonstrated to exhibit multiple structural facets such as ferroelasticity, ferroelectricity, and antiferroelectricity. The transition from a room temperature (RT) centrosymmetric structure to a low‐tempera...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-11, Vol.34 (44), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 44 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Xu, Xianghan Huang, Fei‐Ting Du, Kai Cheong, Sang‐Wook |
description | Layered Li2SrNb2O7, an inorganic oxide in its bulk single‐crystalline form, is experimentally demonstrated to exhibit multiple structural facets such as ferroelasticity, ferroelectricity, and antiferroelectricity. The transition from a room temperature (RT) centrosymmetric structure to a low‐temperature out‐of‐plane ferroelectric and in‐plane antiferroelectric structure and the low‐temperature (LT) ferroelectric domain configuration are unveiled in TEM, piezoresponse force microscopy, and polarization loop studies. Li2SrNb2O7 also exhibits highly tunable ferroelasticity and excellent Li+ in‐plane conduction, which leads to a giant in‐plane memristor behavior and an in‐plane electronic conductivity increase by three orders of magnitude by electric poling at room RT). The accumulation of Li+ vacancies at the crystal–electrode interface is visualized using in situ optical microscopy. The Li‐ionic biased state shows a clear in‐plane rectification effect combined with a significant relaxation upon time at RT. Relaxation can be fully suppressed at LTs such as 200 K, and utilizing an electric field cooling, a stable rectification can be achieved at 200 K. The results shed light on the selective control of multifunctionalities such as ferroelasticity, ferroelectricity, and ionic‐migration‐mediated effects (a memristor effect and rectification) in a single‐phase bulk material utilizing, for example, different directions, temperatures, frequencies, and magnitudes of electric field.
Layered perovskite Li2SrNb2O7 bulk single crystals are synthesized. At room temperature, Li ions show significant intralayer activities, which creates a giant memristivity and a rectification effect combining with a relaxation upon time. At low temperature, out‐of‐plane ferroelectricity and in‐plane antiferroelectricity develop, and the rectification state becomes robust. The results demonstrate a selectively controlling of the ferroic orders and ionic migration. |
doi_str_mv | 10.1002/adma.202206022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2731381560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731381560</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2732-11c602cd4385fc718864d5ad9d9be00379b1dbf6f18ea7b8cf5ecc08aa76bdd23</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmNw5VyJ6zqctE0TbtNggLQxCcY5yqeUqWtH2oL278k22MWWXz-25RehWwxjDEDupdnIMQFCgMZwhga4IDjNgRfnaAA8K1JOc3aJrtp2DQCcAh2gatFXnXd9rTvf1LLy3S5pXDL35CO8KbIsH5KF3QTfdv479kbJqq-lqmzybuOE81ru50bJzIbQ2EpGTh84WZt_MZLhoF6jCyer1t785SH6nD2tpi_pfPn8Op3M0y0pM5JirOMH2uQZK5wuMWM0N4U03HBlAbKSK2yUow4zK0vFtCus1sCkLKkyhmRDdHfcuw3NV2_bTqybPsTvWhEP4IzhgkKk-JH68ZXdiW3wGxl2AoPY2yn2doqTnWLyuJicquwXwUltUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731381560</pqid></control><display><type>article</type><title>Multifunctionality of Li2SrNb2O7: Memristivity, Tunable Rectification, Ferroelasticity, and Ferroelectricity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Xianghan ; Huang, Fei‐Ting ; Du, Kai ; Cheong, Sang‐Wook</creator><creatorcontrib>Xu, Xianghan ; Huang, Fei‐Ting ; Du, Kai ; Cheong, Sang‐Wook</creatorcontrib><description>Layered Li2SrNb2O7, an inorganic oxide in its bulk single‐crystalline form, is experimentally demonstrated to exhibit multiple structural facets such as ferroelasticity, ferroelectricity, and antiferroelectricity. The transition from a room temperature (RT) centrosymmetric structure to a low‐temperature out‐of‐plane ferroelectric and in‐plane antiferroelectric structure and the low‐temperature (LT) ferroelectric domain configuration are unveiled in TEM, piezoresponse force microscopy, and polarization loop studies. Li2SrNb2O7 also exhibits highly tunable ferroelasticity and excellent Li+ in‐plane conduction, which leads to a giant in‐plane memristor behavior and an in‐plane electronic conductivity increase by three orders of magnitude by electric poling at room RT). The accumulation of Li+ vacancies at the crystal–electrode interface is visualized using in situ optical microscopy. The Li‐ionic biased state shows a clear in‐plane rectification effect combined with a significant relaxation upon time at RT. Relaxation can be fully suppressed at LTs such as 200 K, and utilizing an electric field cooling, a stable rectification can be achieved at 200 K. The results shed light on the selective control of multifunctionalities such as ferroelasticity, ferroelectricity, and ionic‐migration‐mediated effects (a memristor effect and rectification) in a single‐phase bulk material utilizing, for example, different directions, temperatures, frequencies, and magnitudes of electric field.
Layered perovskite Li2SrNb2O7 bulk single crystals are synthesized. At room temperature, Li ions show significant intralayer activities, which creates a giant memristivity and a rectification effect combining with a relaxation upon time. At low temperature, out‐of‐plane ferroelectricity and in‐plane antiferroelectricity develop, and the rectification state becomes robust. The results demonstrate a selectively controlling of the ferroic orders and ionic migration.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202206022</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antiferroelectricity ; Electric fields ; Ferroelasticity ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; ionic conductors ; Lattice vacancies ; Materials science ; Memristors ; Microscopy ; Optical microscopy ; rectification ; Room temperature ; Ruddlesden–Popper phase ; single crystals ; Temperature</subject><ispartof>Advanced materials (Weinheim), 2022-11, Vol.34 (44), p.n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6854-300X ; 0000-0001-9905-6175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202206022$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202206022$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xu, Xianghan</creatorcontrib><creatorcontrib>Huang, Fei‐Ting</creatorcontrib><creatorcontrib>Du, Kai</creatorcontrib><creatorcontrib>Cheong, Sang‐Wook</creatorcontrib><title>Multifunctionality of Li2SrNb2O7: Memristivity, Tunable Rectification, Ferroelasticity, and Ferroelectricity</title><title>Advanced materials (Weinheim)</title><description>Layered Li2SrNb2O7, an inorganic oxide in its bulk single‐crystalline form, is experimentally demonstrated to exhibit multiple structural facets such as ferroelasticity, ferroelectricity, and antiferroelectricity. The transition from a room temperature (RT) centrosymmetric structure to a low‐temperature out‐of‐plane ferroelectric and in‐plane antiferroelectric structure and the low‐temperature (LT) ferroelectric domain configuration are unveiled in TEM, piezoresponse force microscopy, and polarization loop studies. Li2SrNb2O7 also exhibits highly tunable ferroelasticity and excellent Li+ in‐plane conduction, which leads to a giant in‐plane memristor behavior and an in‐plane electronic conductivity increase by three orders of magnitude by electric poling at room RT). The accumulation of Li+ vacancies at the crystal–electrode interface is visualized using in situ optical microscopy. The Li‐ionic biased state shows a clear in‐plane rectification effect combined with a significant relaxation upon time at RT. Relaxation can be fully suppressed at LTs such as 200 K, and utilizing an electric field cooling, a stable rectification can be achieved at 200 K. The results shed light on the selective control of multifunctionalities such as ferroelasticity, ferroelectricity, and ionic‐migration‐mediated effects (a memristor effect and rectification) in a single‐phase bulk material utilizing, for example, different directions, temperatures, frequencies, and magnitudes of electric field.
Layered perovskite Li2SrNb2O7 bulk single crystals are synthesized. At room temperature, Li ions show significant intralayer activities, which creates a giant memristivity and a rectification effect combining with a relaxation upon time. At low temperature, out‐of‐plane ferroelectricity and in‐plane antiferroelectricity develop, and the rectification state becomes robust. The results demonstrate a selectively controlling of the ferroic orders and ionic migration.</description><subject>Antiferroelectricity</subject><subject>Electric fields</subject><subject>Ferroelasticity</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>ionic conductors</subject><subject>Lattice vacancies</subject><subject>Materials science</subject><subject>Memristors</subject><subject>Microscopy</subject><subject>Optical microscopy</subject><subject>rectification</subject><subject>Room temperature</subject><subject>Ruddlesden–Popper phase</subject><subject>single crystals</subject><subject>Temperature</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kE1PwzAMhiMEEmNw5VyJ6zqctE0TbtNggLQxCcY5yqeUqWtH2oL278k22MWWXz-25RehWwxjDEDupdnIMQFCgMZwhga4IDjNgRfnaAA8K1JOc3aJrtp2DQCcAh2gatFXnXd9rTvf1LLy3S5pXDL35CO8KbIsH5KF3QTfdv479kbJqq-lqmzybuOE81ru50bJzIbQ2EpGTh84WZt_MZLhoF6jCyer1t785SH6nD2tpi_pfPn8Op3M0y0pM5JirOMH2uQZK5wuMWM0N4U03HBlAbKSK2yUow4zK0vFtCus1sCkLKkyhmRDdHfcuw3NV2_bTqybPsTvWhEP4IzhgkKk-JH68ZXdiW3wGxl2AoPY2yn2doqTnWLyuJicquwXwUltUg</recordid><startdate>20221103</startdate><enddate>20221103</enddate><creator>Xu, Xianghan</creator><creator>Huang, Fei‐Ting</creator><creator>Du, Kai</creator><creator>Cheong, Sang‐Wook</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6854-300X</orcidid><orcidid>https://orcid.org/0000-0001-9905-6175</orcidid></search><sort><creationdate>20221103</creationdate><title>Multifunctionality of Li2SrNb2O7: Memristivity, Tunable Rectification, Ferroelasticity, and Ferroelectricity</title><author>Xu, Xianghan ; Huang, Fei‐Ting ; Du, Kai ; Cheong, Sang‐Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2732-11c602cd4385fc718864d5ad9d9be00379b1dbf6f18ea7b8cf5ecc08aa76bdd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferroelectricity</topic><topic>Electric fields</topic><topic>Ferroelasticity</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>ionic conductors</topic><topic>Lattice vacancies</topic><topic>Materials science</topic><topic>Memristors</topic><topic>Microscopy</topic><topic>Optical microscopy</topic><topic>rectification</topic><topic>Room temperature</topic><topic>Ruddlesden–Popper phase</topic><topic>single crystals</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xianghan</creatorcontrib><creatorcontrib>Huang, Fei‐Ting</creatorcontrib><creatorcontrib>Du, Kai</creatorcontrib><creatorcontrib>Cheong, Sang‐Wook</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xianghan</au><au>Huang, Fei‐Ting</au><au>Du, Kai</au><au>Cheong, Sang‐Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctionality of Li2SrNb2O7: Memristivity, Tunable Rectification, Ferroelasticity, and Ferroelectricity</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-11-03</date><risdate>2022</risdate><volume>34</volume><issue>44</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Layered Li2SrNb2O7, an inorganic oxide in its bulk single‐crystalline form, is experimentally demonstrated to exhibit multiple structural facets such as ferroelasticity, ferroelectricity, and antiferroelectricity. The transition from a room temperature (RT) centrosymmetric structure to a low‐temperature out‐of‐plane ferroelectric and in‐plane antiferroelectric structure and the low‐temperature (LT) ferroelectric domain configuration are unveiled in TEM, piezoresponse force microscopy, and polarization loop studies. Li2SrNb2O7 also exhibits highly tunable ferroelasticity and excellent Li+ in‐plane conduction, which leads to a giant in‐plane memristor behavior and an in‐plane electronic conductivity increase by three orders of magnitude by electric poling at room RT). The accumulation of Li+ vacancies at the crystal–electrode interface is visualized using in situ optical microscopy. The Li‐ionic biased state shows a clear in‐plane rectification effect combined with a significant relaxation upon time at RT. Relaxation can be fully suppressed at LTs such as 200 K, and utilizing an electric field cooling, a stable rectification can be achieved at 200 K. The results shed light on the selective control of multifunctionalities such as ferroelasticity, ferroelectricity, and ionic‐migration‐mediated effects (a memristor effect and rectification) in a single‐phase bulk material utilizing, for example, different directions, temperatures, frequencies, and magnitudes of electric field.
Layered perovskite Li2SrNb2O7 bulk single crystals are synthesized. At room temperature, Li ions show significant intralayer activities, which creates a giant memristivity and a rectification effect combining with a relaxation upon time. At low temperature, out‐of‐plane ferroelectricity and in‐plane antiferroelectricity develop, and the rectification state becomes robust. The results demonstrate a selectively controlling of the ferroic orders and ionic migration.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202206022</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6854-300X</orcidid><orcidid>https://orcid.org/0000-0001-9905-6175</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-11, Vol.34 (44), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_journals_2731381560 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Antiferroelectricity Electric fields Ferroelasticity Ferroelectric domains Ferroelectric materials Ferroelectricity ionic conductors Lattice vacancies Materials science Memristors Microscopy Optical microscopy rectification Room temperature Ruddlesden–Popper phase single crystals Temperature |
title | Multifunctionality of Li2SrNb2O7: Memristivity, Tunable Rectification, Ferroelasticity, and Ferroelectricity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctionality%20of%20Li2SrNb2O7:%20Memristivity,%20Tunable%20Rectification,%20Ferroelasticity,%20and%20Ferroelectricity&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xu,%20Xianghan&rft.date=2022-11-03&rft.volume=34&rft.issue=44&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202206022&rft_dat=%3Cproquest_wiley%3E2731381560%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731381560&rft_id=info:pmid/&rfr_iscdi=true |