Data-Driven Fuzzy Target-Side Representation for Intelligent Translation System

The encoder-decoder framework has been widely used in various practical artificial intelligence cyber-physical systems, including intelligent translation systems. The decoding process in such a framework usually demands the target-side representation, which is often learned by an autoaggressive deco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2022-11, Vol.30 (11), p.4568-4577
Hauptverfasser: Chen, Kehai, Yang, Muyun, Zhao, Tiejun, Zhang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4577
container_issue 11
container_start_page 4568
container_title IEEE transactions on fuzzy systems
container_volume 30
creator Chen, Kehai
Yang, Muyun
Zhao, Tiejun
Zhang, Min
description The encoder-decoder framework has been widely used in various practical artificial intelligence cyber-physical systems, including intelligent translation systems. The decoding process in such a framework usually demands the target-side representation, which is often learned by an autoaggressive decoder to simulate the target context information at the current time-step. However, the autoaggressive decoder only captures the previously generated partial target fragment and fails in simulating the global contextual information. In this article, we propose a new data-driven fuzzy context representation strategy to simulate the global target information. Specifically, we design two fuzzy methods to the global target contextual information, which are bag-of-words of target language generated via a softmax layer from the source-side representation and whole target sentence retrieved from the translation memory according to the source-side representation. Both methods facilitate the autoaggressive decoder to handle the global target context at the current time-step, thereby learning a more effective context vector for the generation of target translation. Extensive experiments on two machine translation tasks demonstrated that the proposed method achieved 3% improvement of BLEU score over a strong baseline.
doi_str_mv 10.1109/TFUZZ.2022.3167129
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2731243274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9756858</ieee_id><sourcerecordid>2731243274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c16a14a58e39ee41a4145aab24534232b335bae408b08219bddd455d6909cdf23</originalsourceid><addsrcrecordid>eNo9kE1rwkAQhpfSQu3HH2gvgZ5jd_Yr2WPR2gqCUOPFy7JJJhKJid1dC_rrG6v0NMPM-847PIQ8AR0CUP2aTZar1ZBRxoYcVAJMX5EBaAExpVxc9z1VPFYJVbfkzvsNpSAkpAMyH9tg47Grf7CNJvvj8RBl1q0xxIu6xOgLdw49tsGGumujqnPRtA3YNPW6H0aZs61vzrvFwQfcPpCbyjYeHy_1niwn79noM57NP6ajt1lcMKFCXICyIKxMkWtEAVb0_1ibMyG5YJzlnMvcoqBpTlMGOi_LUkhZKk11UVaM35OX892d67736IPZdHvX9pGGJRyY4CwRvYqdVYXrvHdYmZ2rt9YdDFBzAmf-wJkTOHMB15uez6YaEf8NOpEqlSn_Bbowafo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731243274</pqid></control><display><type>article</type><title>Data-Driven Fuzzy Target-Side Representation for Intelligent Translation System</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Kehai ; Yang, Muyun ; Zhao, Tiejun ; Zhang, Min</creator><creatorcontrib>Chen, Kehai ; Yang, Muyun ; Zhao, Tiejun ; Zhang, Min</creatorcontrib><description>The encoder-decoder framework has been widely used in various practical artificial intelligence cyber-physical systems, including intelligent translation systems. The decoding process in such a framework usually demands the target-side representation, which is often learned by an autoaggressive decoder to simulate the target context information at the current time-step. However, the autoaggressive decoder only captures the previously generated partial target fragment and fails in simulating the global contextual information. In this article, we propose a new data-driven fuzzy context representation strategy to simulate the global target information. Specifically, we design two fuzzy methods to the global target contextual information, which are bag-of-words of target language generated via a softmax layer from the source-side representation and whole target sentence retrieved from the translation memory according to the source-side representation. Both methods facilitate the autoaggressive decoder to handle the global target context at the current time-step, thereby learning a more effective context vector for the generation of target translation. Extensive experiments on two machine translation tasks demonstrated that the proposed method achieved 3% improvement of BLEU score over a strong baseline.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2022.3167129</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Coders ; Context ; Context modeling ; Cyber-physical systems ; Data-driven global context ; Decoding ; Encoding ; fuzzy bag-of-word (FBoW) ; intelligent translation system ; Learning systems ; Machine translation ; Representations ; Simulation ; target-side representation ; Task analysis ; Transformers ; translation memory (TM)</subject><ispartof>IEEE transactions on fuzzy systems, 2022-11, Vol.30 (11), p.4568-4577</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c16a14a58e39ee41a4145aab24534232b335bae408b08219bddd455d6909cdf23</cites><orcidid>0000-0002-5940-0266 ; 0000-0002-3895-5510 ; 0000-0002-4346-7618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9756858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9756858$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Kehai</creatorcontrib><creatorcontrib>Yang, Muyun</creatorcontrib><creatorcontrib>Zhao, Tiejun</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><title>Data-Driven Fuzzy Target-Side Representation for Intelligent Translation System</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>The encoder-decoder framework has been widely used in various practical artificial intelligence cyber-physical systems, including intelligent translation systems. The decoding process in such a framework usually demands the target-side representation, which is often learned by an autoaggressive decoder to simulate the target context information at the current time-step. However, the autoaggressive decoder only captures the previously generated partial target fragment and fails in simulating the global contextual information. In this article, we propose a new data-driven fuzzy context representation strategy to simulate the global target information. Specifically, we design two fuzzy methods to the global target contextual information, which are bag-of-words of target language generated via a softmax layer from the source-side representation and whole target sentence retrieved from the translation memory according to the source-side representation. Both methods facilitate the autoaggressive decoder to handle the global target context at the current time-step, thereby learning a more effective context vector for the generation of target translation. Extensive experiments on two machine translation tasks demonstrated that the proposed method achieved 3% improvement of BLEU score over a strong baseline.</description><subject>Artificial intelligence</subject><subject>Coders</subject><subject>Context</subject><subject>Context modeling</subject><subject>Cyber-physical systems</subject><subject>Data-driven global context</subject><subject>Decoding</subject><subject>Encoding</subject><subject>fuzzy bag-of-word (FBoW)</subject><subject>intelligent translation system</subject><subject>Learning systems</subject><subject>Machine translation</subject><subject>Representations</subject><subject>Simulation</subject><subject>target-side representation</subject><subject>Task analysis</subject><subject>Transformers</subject><subject>translation memory (TM)</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rwkAQhpfSQu3HH2gvgZ5jd_Yr2WPR2gqCUOPFy7JJJhKJid1dC_rrG6v0NMPM-847PIQ8AR0CUP2aTZar1ZBRxoYcVAJMX5EBaAExpVxc9z1VPFYJVbfkzvsNpSAkpAMyH9tg47Grf7CNJvvj8RBl1q0xxIu6xOgLdw49tsGGumujqnPRtA3YNPW6H0aZs61vzrvFwQfcPpCbyjYeHy_1niwn79noM57NP6ajt1lcMKFCXICyIKxMkWtEAVb0_1ibMyG5YJzlnMvcoqBpTlMGOi_LUkhZKk11UVaM35OX892d67736IPZdHvX9pGGJRyY4CwRvYqdVYXrvHdYmZ2rt9YdDFBzAmf-wJkTOHMB15uez6YaEf8NOpEqlSn_Bbowafo</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Chen, Kehai</creator><creator>Yang, Muyun</creator><creator>Zhao, Tiejun</creator><creator>Zhang, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5940-0266</orcidid><orcidid>https://orcid.org/0000-0002-3895-5510</orcidid><orcidid>https://orcid.org/0000-0002-4346-7618</orcidid></search><sort><creationdate>20221101</creationdate><title>Data-Driven Fuzzy Target-Side Representation for Intelligent Translation System</title><author>Chen, Kehai ; Yang, Muyun ; Zhao, Tiejun ; Zhang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c16a14a58e39ee41a4145aab24534232b335bae408b08219bddd455d6909cdf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Coders</topic><topic>Context</topic><topic>Context modeling</topic><topic>Cyber-physical systems</topic><topic>Data-driven global context</topic><topic>Decoding</topic><topic>Encoding</topic><topic>fuzzy bag-of-word (FBoW)</topic><topic>intelligent translation system</topic><topic>Learning systems</topic><topic>Machine translation</topic><topic>Representations</topic><topic>Simulation</topic><topic>target-side representation</topic><topic>Task analysis</topic><topic>Transformers</topic><topic>translation memory (TM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kehai</creatorcontrib><creatorcontrib>Yang, Muyun</creatorcontrib><creatorcontrib>Zhao, Tiejun</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Kehai</au><au>Yang, Muyun</au><au>Zhao, Tiejun</au><au>Zhang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Fuzzy Target-Side Representation for Intelligent Translation System</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>30</volume><issue>11</issue><spage>4568</spage><epage>4577</epage><pages>4568-4577</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>The encoder-decoder framework has been widely used in various practical artificial intelligence cyber-physical systems, including intelligent translation systems. The decoding process in such a framework usually demands the target-side representation, which is often learned by an autoaggressive decoder to simulate the target context information at the current time-step. However, the autoaggressive decoder only captures the previously generated partial target fragment and fails in simulating the global contextual information. In this article, we propose a new data-driven fuzzy context representation strategy to simulate the global target information. Specifically, we design two fuzzy methods to the global target contextual information, which are bag-of-words of target language generated via a softmax layer from the source-side representation and whole target sentence retrieved from the translation memory according to the source-side representation. Both methods facilitate the autoaggressive decoder to handle the global target context at the current time-step, thereby learning a more effective context vector for the generation of target translation. Extensive experiments on two machine translation tasks demonstrated that the proposed method achieved 3% improvement of BLEU score over a strong baseline.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2022.3167129</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5940-0266</orcidid><orcidid>https://orcid.org/0000-0002-3895-5510</orcidid><orcidid>https://orcid.org/0000-0002-4346-7618</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2022-11, Vol.30 (11), p.4568-4577
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_2731243274
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Coders
Context
Context modeling
Cyber-physical systems
Data-driven global context
Decoding
Encoding
fuzzy bag-of-word (FBoW)
intelligent translation system
Learning systems
Machine translation
Representations
Simulation
target-side representation
Task analysis
Transformers
translation memory (TM)
title Data-Driven Fuzzy Target-Side Representation for Intelligent Translation System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Fuzzy%20Target-Side%20Representation%20for%20Intelligent%20Translation%20System&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Chen,%20Kehai&rft.date=2022-11-01&rft.volume=30&rft.issue=11&rft.spage=4568&rft.epage=4577&rft.pages=4568-4577&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2022.3167129&rft_dat=%3Cproquest_RIE%3E2731243274%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731243274&rft_id=info:pmid/&rft_ieee_id=9756858&rfr_iscdi=true