SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION
In marine an port construction, wave forecasting one day to one week ahead is indispensable to determine whether construction is feasible, to manage the process, and to ensure safety. In recent year, many studies on wave prediction have been conducted using deep learning, showing the potential for p...
Gespeichert in:
Veröffentlicht in: | Doboku Gakkai Ronbunshu. B3, Kaiyo Kaihatsu Ser. B3 (Ocean Engineering), 2022, Vol.78(2), pp.I_481-I_486 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | I_486 |
---|---|
container_issue | 2 |
container_start_page | I_481 |
container_title | Doboku Gakkai Ronbunshu. B3, Kaiyo Kaihatsu |
container_volume | 78 |
creator | MASUDA, Kazuki KANAZAWA, Tsuyoshi |
description | In marine an port construction, wave forecasting one day to one week ahead is indispensable to determine whether construction is feasible, to manage the process, and to ensure safety. In recent year, many studies on wave prediction have been conducted using deep learning, showing the potential for practical, accurate, and low-cost wave prediction models. In previous studies, spatial and temporal learning of weather fields have been found to be effective, respectively, but no study has yet taken both into account. In this study, we proposed a model that can learn both in space and in time and clarified its effectiveness. Furthermore, we attempted to forecast wave in the coastal areas of Japan for 11 days by using the forecast data from the GPV global numerical prediction model of the Japan Meteorological Agency (JMA). |
doi_str_mv | 10.2208/jscejoe.78.2_I_481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731221412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731221412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1802-3da894764cdea6a5cdbad8cf2759758644e9309f01c28d50dcf184d5abf932bb3</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhCMEElXpC3CyxDnFdv7so5W6baSQRGmg4mQ5jgONSlPs9sDbE2hVwWVnVzvfrjSOc4_gFGNIHjurdNfraUSmWCTCJ-jKGWFEAtcPCbn-0986E2s3NYQEeZQGdOQUq4JVCUsBy2ag4k9FXg7DjPMCpJyVWZItQD4Ha86qJS_BPC95zFbVoAAhMGOvYM1eOChKPkviKsmzO-emlVurJ2cdO89zXsVLN80XScxSVyECses1klA_Cn3VaBnKQDW1bIhqcRTQKCCh72vqQdpCpDBpAtioFhG_CWTdUg_XtTd2Hk5396b_PGp7EF1_NLvhpcCRhzBGPsKDC59cyvTWGt2Kvdl8SPMlEBQ_4YlzeCIi4hzeAMUnqLMH-aYviDSHjdrq_8hQfqnLVr1LI_TO-wZHknWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731221412</pqid></control><display><type>article</type><title>SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>MASUDA, Kazuki ; KANAZAWA, Tsuyoshi</creator><creatorcontrib>MASUDA, Kazuki ; KANAZAWA, Tsuyoshi</creatorcontrib><description>In marine an port construction, wave forecasting one day to one week ahead is indispensable to determine whether construction is feasible, to manage the process, and to ensure safety. In recent year, many studies on wave prediction have been conducted using deep learning, showing the potential for practical, accurate, and low-cost wave prediction models. In previous studies, spatial and temporal learning of weather fields have been found to be effective, respectively, but no study has yet taken both into account. In this study, we proposed a model that can learn both in space and in time and clarified its effectiveness. Furthermore, we attempted to forecast wave in the coastal areas of Japan for 11 days by using the forecast data from the GPV global numerical prediction model of the Japan Meteorological Agency (JMA).</description><identifier>ISSN: 2185-4688</identifier><identifier>EISSN: 2185-4688</identifier><identifier>DOI: 10.2208/jscejoe.78.2_I_481</identifier><language>jpn</language><publisher>Tokyo: Japan Society of Civil Engineers</publisher><subject>cluster analysis ; Coastal zone ; Construction ; convolutional neural network ; Deep learning ; long short-term memory ; Numerical prediction ; Prediction models ; Wave forecasting ; Wave predicting ; wave prediction ; Weather forecasting</subject><ispartof>Journal of Japan Society of Civil Engineers, Ser. B3 (Ocean Engineering), 2022, Vol.78(2), pp.I_481-I_486</ispartof><rights>2022 Japan Society of Civil Engineers</rights><rights>Copyright Japan Science and Technology Agency 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1802-3da894764cdea6a5cdbad8cf2759758644e9309f01c28d50dcf184d5abf932bb3</citedby><cites>FETCH-LOGICAL-c1802-3da894764cdea6a5cdbad8cf2759758644e9309f01c28d50dcf184d5abf932bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>MASUDA, Kazuki</creatorcontrib><creatorcontrib>KANAZAWA, Tsuyoshi</creatorcontrib><title>SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION</title><title>Doboku Gakkai Ronbunshu. B3, Kaiyo Kaihatsu</title><addtitle>J. JSCE, Ser. B3</addtitle><description>In marine an port construction, wave forecasting one day to one week ahead is indispensable to determine whether construction is feasible, to manage the process, and to ensure safety. In recent year, many studies on wave prediction have been conducted using deep learning, showing the potential for practical, accurate, and low-cost wave prediction models. In previous studies, spatial and temporal learning of weather fields have been found to be effective, respectively, but no study has yet taken both into account. In this study, we proposed a model that can learn both in space and in time and clarified its effectiveness. Furthermore, we attempted to forecast wave in the coastal areas of Japan for 11 days by using the forecast data from the GPV global numerical prediction model of the Japan Meteorological Agency (JMA).</description><subject>cluster analysis</subject><subject>Coastal zone</subject><subject>Construction</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>long short-term memory</subject><subject>Numerical prediction</subject><subject>Prediction models</subject><subject>Wave forecasting</subject><subject>Wave predicting</subject><subject>wave prediction</subject><subject>Weather forecasting</subject><issn>2185-4688</issn><issn>2185-4688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkM1OwzAQhCMEElXpC3CyxDnFdv7so5W6baSQRGmg4mQ5jgONSlPs9sDbE2hVwWVnVzvfrjSOc4_gFGNIHjurdNfraUSmWCTCJ-jKGWFEAtcPCbn-0986E2s3NYQEeZQGdOQUq4JVCUsBy2ag4k9FXg7DjPMCpJyVWZItQD4Ha86qJS_BPC95zFbVoAAhMGOvYM1eOChKPkviKsmzO-emlVurJ2cdO89zXsVLN80XScxSVyECses1klA_Cn3VaBnKQDW1bIhqcRTQKCCh72vqQdpCpDBpAtioFhG_CWTdUg_XtTd2Hk5396b_PGp7EF1_NLvhpcCRhzBGPsKDC59cyvTWGt2Kvdl8SPMlEBQ_4YlzeCIi4hzeAMUnqLMH-aYviDSHjdrq_8hQfqnLVr1LI_TO-wZHknWw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>MASUDA, Kazuki</creator><creator>KANAZAWA, Tsuyoshi</creator><general>Japan Society of Civil Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>2022</creationdate><title>SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION</title><author>MASUDA, Kazuki ; KANAZAWA, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1802-3da894764cdea6a5cdbad8cf2759758644e9309f01c28d50dcf184d5abf932bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2022</creationdate><topic>cluster analysis</topic><topic>Coastal zone</topic><topic>Construction</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>long short-term memory</topic><topic>Numerical prediction</topic><topic>Prediction models</topic><topic>Wave forecasting</topic><topic>Wave predicting</topic><topic>wave prediction</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>MASUDA, Kazuki</creatorcontrib><creatorcontrib>KANAZAWA, Tsuyoshi</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Doboku Gakkai Ronbunshu. B3, Kaiyo Kaihatsu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MASUDA, Kazuki</au><au>KANAZAWA, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION</atitle><jtitle>Doboku Gakkai Ronbunshu. B3, Kaiyo Kaihatsu</jtitle><addtitle>J. JSCE, Ser. B3</addtitle><date>2022</date><risdate>2022</risdate><volume>78</volume><issue>2</issue><spage>I_481</spage><epage>I_486</epage><pages>I_481-I_486</pages><issn>2185-4688</issn><eissn>2185-4688</eissn><abstract>In marine an port construction, wave forecasting one day to one week ahead is indispensable to determine whether construction is feasible, to manage the process, and to ensure safety. In recent year, many studies on wave prediction have been conducted using deep learning, showing the potential for practical, accurate, and low-cost wave prediction models. In previous studies, spatial and temporal learning of weather fields have been found to be effective, respectively, but no study has yet taken both into account. In this study, we proposed a model that can learn both in space and in time and clarified its effectiveness. Furthermore, we attempted to forecast wave in the coastal areas of Japan for 11 days by using the forecast data from the GPV global numerical prediction model of the Japan Meteorological Agency (JMA).</abstract><cop>Tokyo</cop><pub>Japan Society of Civil Engineers</pub><doi>10.2208/jscejoe.78.2_I_481</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2185-4688 |
ispartof | Journal of Japan Society of Civil Engineers, Ser. B3 (Ocean Engineering), 2022, Vol.78(2), pp.I_481-I_486 |
issn | 2185-4688 2185-4688 |
language | jpn |
recordid | cdi_proquest_journals_2731221412 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | cluster analysis Coastal zone Construction convolutional neural network Deep learning long short-term memory Numerical prediction Prediction models Wave forecasting Wave predicting wave prediction Weather forecasting |
title | SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPATIAL%20AND%20TEMPORAL%20DEEP%20LEARNING%20OF%20WEATHER%20FORECASTFOR%2011%20DAY%20WAVE%20PREDICTION&rft.jtitle=Doboku%20Gakkai%20Ronbunshu.%20B3,%20Kaiyo%20Kaihatsu&rft.au=MASUDA,%20Kazuki&rft.date=2022&rft.volume=78&rft.issue=2&rft.spage=I_481&rft.epage=I_486&rft.pages=I_481-I_486&rft.issn=2185-4688&rft.eissn=2185-4688&rft_id=info:doi/10.2208/jscejoe.78.2_I_481&rft_dat=%3Cproquest_cross%3E2731221412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731221412&rft_id=info:pmid/&rfr_iscdi=true |