SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION

In marine an port construction, wave forecasting one day to one week ahead is indispensable to determine whether construction is feasible, to manage the process, and to ensure safety. In recent year, many studies on wave prediction have been conducted using deep learning, showing the potential for p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doboku Gakkai Ronbunshu. B3, Kaiyo Kaihatsu Ser. B3 (Ocean Engineering), 2022, Vol.78(2), pp.I_481-I_486
Hauptverfasser: MASUDA, Kazuki, KANAZAWA, Tsuyoshi
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page I_486
container_issue 2
container_start_page I_481
container_title Doboku Gakkai Ronbunshu. B3, Kaiyo Kaihatsu
container_volume 78
creator MASUDA, Kazuki
KANAZAWA, Tsuyoshi
description In marine an port construction, wave forecasting one day to one week ahead is indispensable to determine whether construction is feasible, to manage the process, and to ensure safety. In recent year, many studies on wave prediction have been conducted using deep learning, showing the potential for practical, accurate, and low-cost wave prediction models. In previous studies, spatial and temporal learning of weather fields have been found to be effective, respectively, but no study has yet taken both into account. In this study, we proposed a model that can learn both in space and in time and clarified its effectiveness. Furthermore, we attempted to forecast wave in the coastal areas of Japan for 11 days by using the forecast data from the GPV global numerical prediction model of the Japan Meteorological Agency (JMA).
doi_str_mv 10.2208/jscejoe.78.2_I_481
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731221412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731221412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1802-3da894764cdea6a5cdbad8cf2759758644e9309f01c28d50dcf184d5abf932bb3</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhCMEElXpC3CyxDnFdv7so5W6baSQRGmg4mQ5jgONSlPs9sDbE2hVwWVnVzvfrjSOc4_gFGNIHjurdNfraUSmWCTCJ-jKGWFEAtcPCbn-0986E2s3NYQEeZQGdOQUq4JVCUsBy2ag4k9FXg7DjPMCpJyVWZItQD4Ha86qJS_BPC95zFbVoAAhMGOvYM1eOChKPkviKsmzO-emlVurJ2cdO89zXsVLN80XScxSVyECses1klA_Cn3VaBnKQDW1bIhqcRTQKCCh72vqQdpCpDBpAtioFhG_CWTdUg_XtTd2Hk5396b_PGp7EF1_NLvhpcCRhzBGPsKDC59cyvTWGt2Kvdl8SPMlEBQ_4YlzeCIi4hzeAMUnqLMH-aYviDSHjdrq_8hQfqnLVr1LI_TO-wZHknWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731221412</pqid></control><display><type>article</type><title>SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>MASUDA, Kazuki ; KANAZAWA, Tsuyoshi</creator><creatorcontrib>MASUDA, Kazuki ; KANAZAWA, Tsuyoshi</creatorcontrib><description>In marine an port construction, wave forecasting one day to one week ahead is indispensable to determine whether construction is feasible, to manage the process, and to ensure safety. In recent year, many studies on wave prediction have been conducted using deep learning, showing the potential for practical, accurate, and low-cost wave prediction models. In previous studies, spatial and temporal learning of weather fields have been found to be effective, respectively, but no study has yet taken both into account. In this study, we proposed a model that can learn both in space and in time and clarified its effectiveness. Furthermore, we attempted to forecast wave in the coastal areas of Japan for 11 days by using the forecast data from the GPV global numerical prediction model of the Japan Meteorological Agency (JMA).</description><identifier>ISSN: 2185-4688</identifier><identifier>EISSN: 2185-4688</identifier><identifier>DOI: 10.2208/jscejoe.78.2_I_481</identifier><language>jpn</language><publisher>Tokyo: Japan Society of Civil Engineers</publisher><subject>cluster analysis ; Coastal zone ; Construction ; convolutional neural network ; Deep learning ; long short-term memory ; Numerical prediction ; Prediction models ; Wave forecasting ; Wave predicting ; wave prediction ; Weather forecasting</subject><ispartof>Journal of Japan Society of Civil Engineers, Ser. B3 (Ocean Engineering), 2022, Vol.78(2), pp.I_481-I_486</ispartof><rights>2022 Japan Society of Civil Engineers</rights><rights>Copyright Japan Science and Technology Agency 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1802-3da894764cdea6a5cdbad8cf2759758644e9309f01c28d50dcf184d5abf932bb3</citedby><cites>FETCH-LOGICAL-c1802-3da894764cdea6a5cdbad8cf2759758644e9309f01c28d50dcf184d5abf932bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>MASUDA, Kazuki</creatorcontrib><creatorcontrib>KANAZAWA, Tsuyoshi</creatorcontrib><title>SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION</title><title>Doboku Gakkai Ronbunshu. B3, Kaiyo Kaihatsu</title><addtitle>J. JSCE, Ser. B3</addtitle><description>In marine an port construction, wave forecasting one day to one week ahead is indispensable to determine whether construction is feasible, to manage the process, and to ensure safety. In recent year, many studies on wave prediction have been conducted using deep learning, showing the potential for practical, accurate, and low-cost wave prediction models. In previous studies, spatial and temporal learning of weather fields have been found to be effective, respectively, but no study has yet taken both into account. In this study, we proposed a model that can learn both in space and in time and clarified its effectiveness. Furthermore, we attempted to forecast wave in the coastal areas of Japan for 11 days by using the forecast data from the GPV global numerical prediction model of the Japan Meteorological Agency (JMA).</description><subject>cluster analysis</subject><subject>Coastal zone</subject><subject>Construction</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>long short-term memory</subject><subject>Numerical prediction</subject><subject>Prediction models</subject><subject>Wave forecasting</subject><subject>Wave predicting</subject><subject>wave prediction</subject><subject>Weather forecasting</subject><issn>2185-4688</issn><issn>2185-4688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkM1OwzAQhCMEElXpC3CyxDnFdv7so5W6baSQRGmg4mQ5jgONSlPs9sDbE2hVwWVnVzvfrjSOc4_gFGNIHjurdNfraUSmWCTCJ-jKGWFEAtcPCbn-0986E2s3NYQEeZQGdOQUq4JVCUsBy2ag4k9FXg7DjPMCpJyVWZItQD4Ha86qJS_BPC95zFbVoAAhMGOvYM1eOChKPkviKsmzO-emlVurJ2cdO89zXsVLN80XScxSVyECses1klA_Cn3VaBnKQDW1bIhqcRTQKCCh72vqQdpCpDBpAtioFhG_CWTdUg_XtTd2Hk5396b_PGp7EF1_NLvhpcCRhzBGPsKDC59cyvTWGt2Kvdl8SPMlEBQ_4YlzeCIi4hzeAMUnqLMH-aYviDSHjdrq_8hQfqnLVr1LI_TO-wZHknWw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>MASUDA, Kazuki</creator><creator>KANAZAWA, Tsuyoshi</creator><general>Japan Society of Civil Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>2022</creationdate><title>SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION</title><author>MASUDA, Kazuki ; KANAZAWA, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1802-3da894764cdea6a5cdbad8cf2759758644e9309f01c28d50dcf184d5abf932bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2022</creationdate><topic>cluster analysis</topic><topic>Coastal zone</topic><topic>Construction</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>long short-term memory</topic><topic>Numerical prediction</topic><topic>Prediction models</topic><topic>Wave forecasting</topic><topic>Wave predicting</topic><topic>wave prediction</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>MASUDA, Kazuki</creatorcontrib><creatorcontrib>KANAZAWA, Tsuyoshi</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Doboku Gakkai Ronbunshu. B3, Kaiyo Kaihatsu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MASUDA, Kazuki</au><au>KANAZAWA, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION</atitle><jtitle>Doboku Gakkai Ronbunshu. B3, Kaiyo Kaihatsu</jtitle><addtitle>J. JSCE, Ser. B3</addtitle><date>2022</date><risdate>2022</risdate><volume>78</volume><issue>2</issue><spage>I_481</spage><epage>I_486</epage><pages>I_481-I_486</pages><issn>2185-4688</issn><eissn>2185-4688</eissn><abstract>In marine an port construction, wave forecasting one day to one week ahead is indispensable to determine whether construction is feasible, to manage the process, and to ensure safety. In recent year, many studies on wave prediction have been conducted using deep learning, showing the potential for practical, accurate, and low-cost wave prediction models. In previous studies, spatial and temporal learning of weather fields have been found to be effective, respectively, but no study has yet taken both into account. In this study, we proposed a model that can learn both in space and in time and clarified its effectiveness. Furthermore, we attempted to forecast wave in the coastal areas of Japan for 11 days by using the forecast data from the GPV global numerical prediction model of the Japan Meteorological Agency (JMA).</abstract><cop>Tokyo</cop><pub>Japan Society of Civil Engineers</pub><doi>10.2208/jscejoe.78.2_I_481</doi></addata></record>
fulltext fulltext
identifier ISSN: 2185-4688
ispartof Journal of Japan Society of Civil Engineers, Ser. B3 (Ocean Engineering), 2022, Vol.78(2), pp.I_481-I_486
issn 2185-4688
2185-4688
language jpn
recordid cdi_proquest_journals_2731221412
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects cluster analysis
Coastal zone
Construction
convolutional neural network
Deep learning
long short-term memory
Numerical prediction
Prediction models
Wave forecasting
Wave predicting
wave prediction
Weather forecasting
title SPATIAL AND TEMPORAL DEEP LEARNING OF WEATHER FORECASTFOR 11 DAY WAVE PREDICTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPATIAL%20AND%20TEMPORAL%20DEEP%20LEARNING%20OF%20WEATHER%20FORECASTFOR%2011%20DAY%20WAVE%20PREDICTION&rft.jtitle=Doboku%20Gakkai%20Ronbunshu.%20B3,%20Kaiyo%20Kaihatsu&rft.au=MASUDA,%20Kazuki&rft.date=2022&rft.volume=78&rft.issue=2&rft.spage=I_481&rft.epage=I_486&rft.pages=I_481-I_486&rft.issn=2185-4688&rft.eissn=2185-4688&rft_id=info:doi/10.2208/jscejoe.78.2_I_481&rft_dat=%3Cproquest_cross%3E2731221412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731221412&rft_id=info:pmid/&rfr_iscdi=true