Generalized Alexander quandles of finite groups and their characterizations

The goal of this paper is to characterization generalized Alexander quandles of finite groups in the language of the underlying groups. Firstly, we prove that if finite groups \(G\) are simple, then the quandle isomorphic classes of generalized Alexander quandles of \(G\) one-to-one correspond to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Higashitani, Akihiro, Kurihara, Hirotake
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Higashitani, Akihiro
Kurihara, Hirotake
description The goal of this paper is to characterization generalized Alexander quandles of finite groups in the language of the underlying groups. Firstly, we prove that if finite groups \(G\) are simple, then the quandle isomorphic classes of generalized Alexander quandles of \(G\) one-to-one correspond to the conjugacy classes of the automorphism groups of \(G\). This correspondence can be also claimed for the case of symmetric groups. Secondly, we give a characterization of generalized Alexander quandles of finite groups \(G\) under some assumptions in terms of \(G\). As corollaries of this characterization, we obtain several characterizations in some particular groups, e.g., abelian groups and dihedral groups. Finally, we perform a characterization of generalized Alexander quandles arising from groups with their order up to \(15\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2730894780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730894780</sourcerecordid><originalsourceid>FETCH-proquest_journals_27308947803</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6EJPW1qWIH3DrvoT21aaEpH1JQHp6u_AArgZmZsUSIeUhq3IhNiz1fuCci2MpikIm7HlHi6SMnrGFs8GPsi0STHGhQQ-ug05bHRDe5OLoYfEQetQETa9INQFJzypoZ_2OrTtlPKY_btn-dn1dHtlIboroQz24SHZJtSglr055WXH53_UFYdM97A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730894780</pqid></control><display><type>article</type><title>Generalized Alexander quandles of finite groups and their characterizations</title><source>Free E- Journals</source><creator>Higashitani, Akihiro ; Kurihara, Hirotake</creator><creatorcontrib>Higashitani, Akihiro ; Kurihara, Hirotake</creatorcontrib><description>The goal of this paper is to characterization generalized Alexander quandles of finite groups in the language of the underlying groups. Firstly, we prove that if finite groups \(G\) are simple, then the quandle isomorphic classes of generalized Alexander quandles of \(G\) one-to-one correspond to the conjugacy classes of the automorphism groups of \(G\). This correspondence can be also claimed for the case of symmetric groups. Secondly, we give a characterization of generalized Alexander quandles of finite groups \(G\) under some assumptions in terms of \(G\). As corollaries of this characterization, we obtain several characterizations in some particular groups, e.g., abelian groups and dihedral groups. Finally, we perform a characterization of generalized Alexander quandles arising from groups with their order up to \(15\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Group theory</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Higashitani, Akihiro</creatorcontrib><creatorcontrib>Kurihara, Hirotake</creatorcontrib><title>Generalized Alexander quandles of finite groups and their characterizations</title><title>arXiv.org</title><description>The goal of this paper is to characterization generalized Alexander quandles of finite groups in the language of the underlying groups. Firstly, we prove that if finite groups \(G\) are simple, then the quandle isomorphic classes of generalized Alexander quandles of \(G\) one-to-one correspond to the conjugacy classes of the automorphism groups of \(G\). This correspondence can be also claimed for the case of symmetric groups. Secondly, we give a characterization of generalized Alexander quandles of finite groups \(G\) under some assumptions in terms of \(G\). As corollaries of this characterization, we obtain several characterizations in some particular groups, e.g., abelian groups and dihedral groups. Finally, we perform a characterization of generalized Alexander quandles arising from groups with their order up to \(15\).</description><subject>Automorphisms</subject><subject>Group theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6EJPW1qWIH3DrvoT21aaEpH1JQHp6u_AArgZmZsUSIeUhq3IhNiz1fuCci2MpikIm7HlHi6SMnrGFs8GPsi0STHGhQQ-ug05bHRDe5OLoYfEQetQETa9INQFJzypoZ_2OrTtlPKY_btn-dn1dHtlIboroQz24SHZJtSglr055WXH53_UFYdM97A</recordid><startdate>20221030</startdate><enddate>20221030</enddate><creator>Higashitani, Akihiro</creator><creator>Kurihara, Hirotake</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221030</creationdate><title>Generalized Alexander quandles of finite groups and their characterizations</title><author>Higashitani, Akihiro ; Kurihara, Hirotake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27308947803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automorphisms</topic><topic>Group theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Higashitani, Akihiro</creatorcontrib><creatorcontrib>Kurihara, Hirotake</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higashitani, Akihiro</au><au>Kurihara, Hirotake</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalized Alexander quandles of finite groups and their characterizations</atitle><jtitle>arXiv.org</jtitle><date>2022-10-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The goal of this paper is to characterization generalized Alexander quandles of finite groups in the language of the underlying groups. Firstly, we prove that if finite groups \(G\) are simple, then the quandle isomorphic classes of generalized Alexander quandles of \(G\) one-to-one correspond to the conjugacy classes of the automorphism groups of \(G\). This correspondence can be also claimed for the case of symmetric groups. Secondly, we give a characterization of generalized Alexander quandles of finite groups \(G\) under some assumptions in terms of \(G\). As corollaries of this characterization, we obtain several characterizations in some particular groups, e.g., abelian groups and dihedral groups. Finally, we perform a characterization of generalized Alexander quandles arising from groups with their order up to \(15\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2730894780
source Free E- Journals
subjects Automorphisms
Group theory
title Generalized Alexander quandles of finite groups and their characterizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalized%20Alexander%20quandles%20of%20finite%20groups%20and%20their%20characterizations&rft.jtitle=arXiv.org&rft.au=Higashitani,%20Akihiro&rft.date=2022-10-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2730894780%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730894780&rft_id=info:pmid/&rfr_iscdi=true