Geochronology and petrogenesis of the Early Palaeozoic Fuxi magnesian granodiorite in southern Zhuguangshan, South China Block and its geodynamic significance

This study provides relevant data on the granodiorite in southern Zhuguangshan, South China Block (SCB), including mineralogical information, zircon U–Pb ages, zircon Hf isotope data, whole‐rock geochemical data, and Sr–Nd–Pb isotopic data. These data indicate that the granodiorite in southern Zhugu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological journal (Chichester, England) England), 2022-11, Vol.57 (11), p.4550-4571
Hauptverfasser: Yu, Yushuai, Zhou, Yun, Dai, Pingyun, Liu, A'sui, Yang, Qidi, Bao, Bo, Xie, Xiaozhan, Wang, Chunshuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4571
container_issue 11
container_start_page 4550
container_title Geological journal (Chichester, England)
container_volume 57
creator Yu, Yushuai
Zhou, Yun
Dai, Pingyun
Liu, A'sui
Yang, Qidi
Bao, Bo
Xie, Xiaozhan
Wang, Chunshuang
description This study provides relevant data on the granodiorite in southern Zhuguangshan, South China Block (SCB), including mineralogical information, zircon U–Pb ages, zircon Hf isotope data, whole‐rock geochemical data, and Sr–Nd–Pb isotopic data. These data indicate that the granodiorite in southern Zhuguangshan crystallized at approximately 448.7 Ma. The hornblende and micas of the granodiorites are magnesio‐hornblende and Mg‐rich biotite, respectively. The granodiorite samples are characterized by relatively high SiO2 contents of 61.72–66.19 wt.%, K2O contents of 3.77–5.18 wt.%, Na2O contents of 2.42–3.16 wt.%, low FeOT contents of 3.93–5.79 wt.%, and relatively high MgO contents of 1.78–2.55 wt.%, with Mg# values (molar Mg/[Mg + Fe] × 100) of 43–50. The contents of rare earth elements (REEs) in the granodiorite specimens are 166–283 ppm, and the REEs show both a chondrite‐normalized REE pattern that inclines rightward and slightly negative Eu anomalies (0.62–0.90). The Fuxi granodiorite is rich in large‐ion lithophile elements (LILEs; Rb, Th, U, and K) but is depleted in high‐field‐strength elements (HFSEs; Nb, Ta, and Ti). All the samples have similar Sr–Nd–Pb and zircon Hf isotopic compositions and have a (87Sr/86Sr)i ratio of 0.707319–0.710888, a (143Nd/144Nd)i ratio of 0.511705–0.511760, a (206Pb/204Pb)t ratio of 17.918–18.459, a (207Pb/204Pb)t ratio of 15.711–15.813, and a (208Pb/204Pb)t ratio of 37.953–38.563. The εNd(t) and εHf(t) values range from −7.12 to −5.88 and from −9.81 to −4.45, respectively, with corresponding two‐stage Nd model ages of 1.66–1.76 Ga and two‐stage Hf model ages of 1.55–1.78 Ga. These findings indicate that the granodiorite is magnesian andesite and that the magmas are derived from a mixture of crustal and mantle materials. Based on these findings in combination with previous research results, it can be concluded that the mantle beneath the Cathaysia Block was moderately depleted during the Early Palaeozoic and that Early Palaeozoic magmatism may be related to Early Palaeozoic oceanic crust subduction. Sketch map showing the known Early Palaeozoic granites, mafic rocks, and metamorphic rocks of the South China Block.
doi_str_mv 10.1002/gj.4557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2730874750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730874750</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3127-30adfab3f76c30b1ff9c812ca634d878ec101b375d1d226f98720443279f9dfe3</originalsourceid><addsrcrecordid>eNp10MFu2zAMBmCh2IBmWbFXENDDDm1aSrIj-7gFabohQAtsvexiMLIkK3WkTLLRug-zZ53T9NoTCeIjCfyEfGFwxQD4td1eZXkuT8iEQVnOGIjsA5kASD72OZySTyltARiDjE3Iv5UOqonBhzbYgaKv6V53MVjtdXKJBkO7RtMlxnag99iiDi_BKXrTPzu6Q3tQ6KmN6EPtQnSdps7TFPpxLXr6p-ltj96mBv0l_XUY00XjPNLvbVCPrw9dl6jVoR487sbTyVnvjFPolf5MPhpskz57q1PycLP8vbidre9WPxbf1jMUjMuZAKwNboSRcyVgw4wpVcG4wrnI6kIWWjFgGyHzmtWcz01ZSA5ZJrgsTVkbLabk_Hh3H8PfXqeu2oY--vFlxaWAQmYyh1F9PSoVQ0pRm2of3Q7jUDGoDuFXdlsdwh_lxVE-uVYP77Fq9fNV_wdauId0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730874750</pqid></control><display><type>article</type><title>Geochronology and petrogenesis of the Early Palaeozoic Fuxi magnesian granodiorite in southern Zhuguangshan, South China Block and its geodynamic significance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, Yushuai ; Zhou, Yun ; Dai, Pingyun ; Liu, A'sui ; Yang, Qidi ; Bao, Bo ; Xie, Xiaozhan ; Wang, Chunshuang</creator><creatorcontrib>Yu, Yushuai ; Zhou, Yun ; Dai, Pingyun ; Liu, A'sui ; Yang, Qidi ; Bao, Bo ; Xie, Xiaozhan ; Wang, Chunshuang</creatorcontrib><description>This study provides relevant data on the granodiorite in southern Zhuguangshan, South China Block (SCB), including mineralogical information, zircon U–Pb ages, zircon Hf isotope data, whole‐rock geochemical data, and Sr–Nd–Pb isotopic data. These data indicate that the granodiorite in southern Zhuguangshan crystallized at approximately 448.7 Ma. The hornblende and micas of the granodiorites are magnesio‐hornblende and Mg‐rich biotite, respectively. The granodiorite samples are characterized by relatively high SiO2 contents of 61.72–66.19 wt.%, K2O contents of 3.77–5.18 wt.%, Na2O contents of 2.42–3.16 wt.%, low FeOT contents of 3.93–5.79 wt.%, and relatively high MgO contents of 1.78–2.55 wt.%, with Mg# values (molar Mg/[Mg + Fe] × 100) of 43–50. The contents of rare earth elements (REEs) in the granodiorite specimens are 166–283 ppm, and the REEs show both a chondrite‐normalized REE pattern that inclines rightward and slightly negative Eu anomalies (0.62–0.90). The Fuxi granodiorite is rich in large‐ion lithophile elements (LILEs; Rb, Th, U, and K) but is depleted in high‐field‐strength elements (HFSEs; Nb, Ta, and Ti). All the samples have similar Sr–Nd–Pb and zircon Hf isotopic compositions and have a (87Sr/86Sr)i ratio of 0.707319–0.710888, a (143Nd/144Nd)i ratio of 0.511705–0.511760, a (206Pb/204Pb)t ratio of 17.918–18.459, a (207Pb/204Pb)t ratio of 15.711–15.813, and a (208Pb/204Pb)t ratio of 37.953–38.563. The εNd(t) and εHf(t) values range from −7.12 to −5.88 and from −9.81 to −4.45, respectively, with corresponding two‐stage Nd model ages of 1.66–1.76 Ga and two‐stage Hf model ages of 1.55–1.78 Ga. These findings indicate that the granodiorite is magnesian andesite and that the magmas are derived from a mixture of crustal and mantle materials. Based on these findings in combination with previous research results, it can be concluded that the mantle beneath the Cathaysia Block was moderately depleted during the Early Palaeozoic and that Early Palaeozoic magmatism may be related to Early Palaeozoic oceanic crust subduction. Sketch map showing the known Early Palaeozoic granites, mafic rocks, and metamorphic rocks of the South China Block.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.4557</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Andesite ; Anomalies ; Biotite ; Crystallization ; Depletion ; Early Palaeozoic ; Earth mantle ; Geochronology ; Geochronometry ; geodynamic ; Hafnium ; Isotopes ; Lead ; Lead isotopes ; Magma ; magnesian granodiorite ; Magnesium ; Micas ; Neodymium isotopes ; Oceanic crust ; Palaeozoic ; Paleozoic ; Petrogenesis ; Radiometric dating ; Rare earth elements ; Rubidium ; Silica ; Silicon dioxide ; South China Block ; Strontium ; Strontium 87 ; Strontium isotopes ; Subduction ; Zhuguangshan ; Zircon</subject><ispartof>Geological journal (Chichester, England), 2022-11, Vol.57 (11), p.4550-4571</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3127-30adfab3f76c30b1ff9c812ca634d878ec101b375d1d226f98720443279f9dfe3</citedby><cites>FETCH-LOGICAL-a3127-30adfab3f76c30b1ff9c812ca634d878ec101b375d1d226f98720443279f9dfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgj.4557$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgj.4557$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yu, Yushuai</creatorcontrib><creatorcontrib>Zhou, Yun</creatorcontrib><creatorcontrib>Dai, Pingyun</creatorcontrib><creatorcontrib>Liu, A'sui</creatorcontrib><creatorcontrib>Yang, Qidi</creatorcontrib><creatorcontrib>Bao, Bo</creatorcontrib><creatorcontrib>Xie, Xiaozhan</creatorcontrib><creatorcontrib>Wang, Chunshuang</creatorcontrib><title>Geochronology and petrogenesis of the Early Palaeozoic Fuxi magnesian granodiorite in southern Zhuguangshan, South China Block and its geodynamic significance</title><title>Geological journal (Chichester, England)</title><description>This study provides relevant data on the granodiorite in southern Zhuguangshan, South China Block (SCB), including mineralogical information, zircon U–Pb ages, zircon Hf isotope data, whole‐rock geochemical data, and Sr–Nd–Pb isotopic data. These data indicate that the granodiorite in southern Zhuguangshan crystallized at approximately 448.7 Ma. The hornblende and micas of the granodiorites are magnesio‐hornblende and Mg‐rich biotite, respectively. The granodiorite samples are characterized by relatively high SiO2 contents of 61.72–66.19 wt.%, K2O contents of 3.77–5.18 wt.%, Na2O contents of 2.42–3.16 wt.%, low FeOT contents of 3.93–5.79 wt.%, and relatively high MgO contents of 1.78–2.55 wt.%, with Mg# values (molar Mg/[Mg + Fe] × 100) of 43–50. The contents of rare earth elements (REEs) in the granodiorite specimens are 166–283 ppm, and the REEs show both a chondrite‐normalized REE pattern that inclines rightward and slightly negative Eu anomalies (0.62–0.90). The Fuxi granodiorite is rich in large‐ion lithophile elements (LILEs; Rb, Th, U, and K) but is depleted in high‐field‐strength elements (HFSEs; Nb, Ta, and Ti). All the samples have similar Sr–Nd–Pb and zircon Hf isotopic compositions and have a (87Sr/86Sr)i ratio of 0.707319–0.710888, a (143Nd/144Nd)i ratio of 0.511705–0.511760, a (206Pb/204Pb)t ratio of 17.918–18.459, a (207Pb/204Pb)t ratio of 15.711–15.813, and a (208Pb/204Pb)t ratio of 37.953–38.563. The εNd(t) and εHf(t) values range from −7.12 to −5.88 and from −9.81 to −4.45, respectively, with corresponding two‐stage Nd model ages of 1.66–1.76 Ga and two‐stage Hf model ages of 1.55–1.78 Ga. These findings indicate that the granodiorite is magnesian andesite and that the magmas are derived from a mixture of crustal and mantle materials. Based on these findings in combination with previous research results, it can be concluded that the mantle beneath the Cathaysia Block was moderately depleted during the Early Palaeozoic and that Early Palaeozoic magmatism may be related to Early Palaeozoic oceanic crust subduction. Sketch map showing the known Early Palaeozoic granites, mafic rocks, and metamorphic rocks of the South China Block.</description><subject>Andesite</subject><subject>Anomalies</subject><subject>Biotite</subject><subject>Crystallization</subject><subject>Depletion</subject><subject>Early Palaeozoic</subject><subject>Earth mantle</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>geodynamic</subject><subject>Hafnium</subject><subject>Isotopes</subject><subject>Lead</subject><subject>Lead isotopes</subject><subject>Magma</subject><subject>magnesian granodiorite</subject><subject>Magnesium</subject><subject>Micas</subject><subject>Neodymium isotopes</subject><subject>Oceanic crust</subject><subject>Palaeozoic</subject><subject>Paleozoic</subject><subject>Petrogenesis</subject><subject>Radiometric dating</subject><subject>Rare earth elements</subject><subject>Rubidium</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>South China Block</subject><subject>Strontium</subject><subject>Strontium 87</subject><subject>Strontium isotopes</subject><subject>Subduction</subject><subject>Zhuguangshan</subject><subject>Zircon</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10MFu2zAMBmCh2IBmWbFXENDDDm1aSrIj-7gFabohQAtsvexiMLIkK3WkTLLRug-zZ53T9NoTCeIjCfyEfGFwxQD4td1eZXkuT8iEQVnOGIjsA5kASD72OZySTyltARiDjE3Iv5UOqonBhzbYgaKv6V53MVjtdXKJBkO7RtMlxnag99iiDi_BKXrTPzu6Q3tQ6KmN6EPtQnSdps7TFPpxLXr6p-ltj96mBv0l_XUY00XjPNLvbVCPrw9dl6jVoR487sbTyVnvjFPolf5MPhpskz57q1PycLP8vbidre9WPxbf1jMUjMuZAKwNboSRcyVgw4wpVcG4wrnI6kIWWjFgGyHzmtWcz01ZSA5ZJrgsTVkbLabk_Hh3H8PfXqeu2oY--vFlxaWAQmYyh1F9PSoVQ0pRm2of3Q7jUDGoDuFXdlsdwh_lxVE-uVYP77Fq9fNV_wdauId0</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Yu, Yushuai</creator><creator>Zhou, Yun</creator><creator>Dai, Pingyun</creator><creator>Liu, A'sui</creator><creator>Yang, Qidi</creator><creator>Bao, Bo</creator><creator>Xie, Xiaozhan</creator><creator>Wang, Chunshuang</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>202211</creationdate><title>Geochronology and petrogenesis of the Early Palaeozoic Fuxi magnesian granodiorite in southern Zhuguangshan, South China Block and its geodynamic significance</title><author>Yu, Yushuai ; Zhou, Yun ; Dai, Pingyun ; Liu, A'sui ; Yang, Qidi ; Bao, Bo ; Xie, Xiaozhan ; Wang, Chunshuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3127-30adfab3f76c30b1ff9c812ca634d878ec101b375d1d226f98720443279f9dfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Andesite</topic><topic>Anomalies</topic><topic>Biotite</topic><topic>Crystallization</topic><topic>Depletion</topic><topic>Early Palaeozoic</topic><topic>Earth mantle</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>geodynamic</topic><topic>Hafnium</topic><topic>Isotopes</topic><topic>Lead</topic><topic>Lead isotopes</topic><topic>Magma</topic><topic>magnesian granodiorite</topic><topic>Magnesium</topic><topic>Micas</topic><topic>Neodymium isotopes</topic><topic>Oceanic crust</topic><topic>Palaeozoic</topic><topic>Paleozoic</topic><topic>Petrogenesis</topic><topic>Radiometric dating</topic><topic>Rare earth elements</topic><topic>Rubidium</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>South China Block</topic><topic>Strontium</topic><topic>Strontium 87</topic><topic>Strontium isotopes</topic><topic>Subduction</topic><topic>Zhuguangshan</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yushuai</creatorcontrib><creatorcontrib>Zhou, Yun</creatorcontrib><creatorcontrib>Dai, Pingyun</creatorcontrib><creatorcontrib>Liu, A'sui</creatorcontrib><creatorcontrib>Yang, Qidi</creatorcontrib><creatorcontrib>Bao, Bo</creatorcontrib><creatorcontrib>Xie, Xiaozhan</creatorcontrib><creatorcontrib>Wang, Chunshuang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yushuai</au><au>Zhou, Yun</au><au>Dai, Pingyun</au><au>Liu, A'sui</au><au>Yang, Qidi</au><au>Bao, Bo</au><au>Xie, Xiaozhan</au><au>Wang, Chunshuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geochronology and petrogenesis of the Early Palaeozoic Fuxi magnesian granodiorite in southern Zhuguangshan, South China Block and its geodynamic significance</atitle><jtitle>Geological journal (Chichester, England)</jtitle><date>2022-11</date><risdate>2022</risdate><volume>57</volume><issue>11</issue><spage>4550</spage><epage>4571</epage><pages>4550-4571</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><abstract>This study provides relevant data on the granodiorite in southern Zhuguangshan, South China Block (SCB), including mineralogical information, zircon U–Pb ages, zircon Hf isotope data, whole‐rock geochemical data, and Sr–Nd–Pb isotopic data. These data indicate that the granodiorite in southern Zhuguangshan crystallized at approximately 448.7 Ma. The hornblende and micas of the granodiorites are magnesio‐hornblende and Mg‐rich biotite, respectively. The granodiorite samples are characterized by relatively high SiO2 contents of 61.72–66.19 wt.%, K2O contents of 3.77–5.18 wt.%, Na2O contents of 2.42–3.16 wt.%, low FeOT contents of 3.93–5.79 wt.%, and relatively high MgO contents of 1.78–2.55 wt.%, with Mg# values (molar Mg/[Mg + Fe] × 100) of 43–50. The contents of rare earth elements (REEs) in the granodiorite specimens are 166–283 ppm, and the REEs show both a chondrite‐normalized REE pattern that inclines rightward and slightly negative Eu anomalies (0.62–0.90). The Fuxi granodiorite is rich in large‐ion lithophile elements (LILEs; Rb, Th, U, and K) but is depleted in high‐field‐strength elements (HFSEs; Nb, Ta, and Ti). All the samples have similar Sr–Nd–Pb and zircon Hf isotopic compositions and have a (87Sr/86Sr)i ratio of 0.707319–0.710888, a (143Nd/144Nd)i ratio of 0.511705–0.511760, a (206Pb/204Pb)t ratio of 17.918–18.459, a (207Pb/204Pb)t ratio of 15.711–15.813, and a (208Pb/204Pb)t ratio of 37.953–38.563. The εNd(t) and εHf(t) values range from −7.12 to −5.88 and from −9.81 to −4.45, respectively, with corresponding two‐stage Nd model ages of 1.66–1.76 Ga and two‐stage Hf model ages of 1.55–1.78 Ga. These findings indicate that the granodiorite is magnesian andesite and that the magmas are derived from a mixture of crustal and mantle materials. Based on these findings in combination with previous research results, it can be concluded that the mantle beneath the Cathaysia Block was moderately depleted during the Early Palaeozoic and that Early Palaeozoic magmatism may be related to Early Palaeozoic oceanic crust subduction. Sketch map showing the known Early Palaeozoic granites, mafic rocks, and metamorphic rocks of the South China Block.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/gj.4557</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0072-1050
ispartof Geological journal (Chichester, England), 2022-11, Vol.57 (11), p.4550-4571
issn 0072-1050
1099-1034
language eng
recordid cdi_proquest_journals_2730874750
source Wiley Online Library Journals Frontfile Complete
subjects Andesite
Anomalies
Biotite
Crystallization
Depletion
Early Palaeozoic
Earth mantle
Geochronology
Geochronometry
geodynamic
Hafnium
Isotopes
Lead
Lead isotopes
Magma
magnesian granodiorite
Magnesium
Micas
Neodymium isotopes
Oceanic crust
Palaeozoic
Paleozoic
Petrogenesis
Radiometric dating
Rare earth elements
Rubidium
Silica
Silicon dioxide
South China Block
Strontium
Strontium 87
Strontium isotopes
Subduction
Zhuguangshan
Zircon
title Geochronology and petrogenesis of the Early Palaeozoic Fuxi magnesian granodiorite in southern Zhuguangshan, South China Block and its geodynamic significance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geochronology%20and%20petrogenesis%20of%20the%20Early%20Palaeozoic%20Fuxi%20magnesian%20granodiorite%20in%20southern%20Zhuguangshan,%20South%20China%20Block%20and%20its%20geodynamic%20significance&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Yu,%20Yushuai&rft.date=2022-11&rft.volume=57&rft.issue=11&rft.spage=4550&rft.epage=4571&rft.pages=4550-4571&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002/gj.4557&rft_dat=%3Cproquest_cross%3E2730874750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730874750&rft_id=info:pmid/&rfr_iscdi=true