Modulation of the NiOx bandgap by controlling oxygen stoichiometry

Transition metal oxides are a class of functional materials widely used in optoelectronics, spintronics, and memory technology. The oxygen stoichiometry of these oxides plays a vital role in determining their electronic, optical, and thermal properties. Post-growth annealing in ozone has shown to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-11, Vol.132 (17)
Hauptverfasser: Dong, M. D., Shen, J. Y., Hong, C. Y., Ran, P. X., He, R.-H., Chen, H. W., Lu, Q. Y., Wu, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Journal of applied physics
container_volume 132
creator Dong, M. D.
Shen, J. Y.
Hong, C. Y.
Ran, P. X.
He, R.-H.
Chen, H. W.
Lu, Q. Y.
Wu, J.
description Transition metal oxides are a class of functional materials widely used in optoelectronics, spintronics, and memory technology. The oxygen stoichiometry of these oxides plays a vital role in determining their electronic, optical, and thermal properties. Post-growth annealing in ozone has shown to be effective in modifying these properties. Here, we choose NiO, an antiferromagnetic Mott insulator in perfect stoichiometry, as an example to show that its stoichiometry can be tuned continuously in a broad range by the control of the oxidation power during growth or a post-growth topotactic reduction process. The bandgap of the as-processed NiOx films was modulated in accordance with their resistivity, lattice constant, and Ni chemical valence. This method can be readily applied to other transition metal oxides for the optimization of their properties.
doi_str_mv 10.1063/5.0109659
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2730868309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730868309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-a505c6b8b6490b17a6b9b3f61ace22dec4bde1a264978443c1a440edfaa1327d3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pwW8Q8KTQ-SZp2uaow38w3UXPIUnTraNrapLJ-u2tbuhB8PQe3h_PAw9C5wQmBDJ2zSdAQGRcHKARgUIkOedwiEYAlCSFyMUxOglhBUBIwcQI3T67ctOoWLsWuwrHpcUv9XyLtWrLheqw7rFxbfSuaep2gd22X9gWh-hqs6zd2kbfn6KjSjXBnu3vGL3d371OH5PZ_OFpejNLDOV5TBQHbjJd6CwVoEmuMi00qzKijKW0tCbVpSWKDu-8SFNmiEpTsGWlFGE0L9kYXexyO-_eNzZEuXIb3w6VkuYMiqxgIAZ1uVPGuxC8rWTn67XyvSQgvyaSXO4nGuzVzgZTx-8NfvCH879QdmX1H_6b_Am0EnSu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730868309</pqid></control><display><type>article</type><title>Modulation of the NiOx bandgap by controlling oxygen stoichiometry</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Dong, M. D. ; Shen, J. Y. ; Hong, C. Y. ; Ran, P. X. ; He, R.-H. ; Chen, H. W. ; Lu, Q. Y. ; Wu, J.</creator><creatorcontrib>Dong, M. D. ; Shen, J. Y. ; Hong, C. Y. ; Ran, P. X. ; He, R.-H. ; Chen, H. W. ; Lu, Q. Y. ; Wu, J.</creatorcontrib><description>Transition metal oxides are a class of functional materials widely used in optoelectronics, spintronics, and memory technology. The oxygen stoichiometry of these oxides plays a vital role in determining their electronic, optical, and thermal properties. Post-growth annealing in ozone has shown to be effective in modifying these properties. Here, we choose NiO, an antiferromagnetic Mott insulator in perfect stoichiometry, as an example to show that its stoichiometry can be tuned continuously in a broad range by the control of the oxidation power during growth or a post-growth topotactic reduction process. The bandgap of the as-processed NiOx films was modulated in accordance with their resistivity, lattice constant, and Ni chemical valence. This method can be readily applied to other transition metal oxides for the optimization of their properties.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0109659</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferromagnetism ; Applied physics ; Energy gap ; Functional materials ; Lattice parameters ; Optical properties ; Optimization ; Optoelectronics ; Oxidation ; Oxygen ; Spintronics ; Stoichiometry ; Thermodynamic properties ; Transition metal oxides</subject><ispartof>Journal of applied physics, 2022-11, Vol.132 (17)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-a505c6b8b6490b17a6b9b3f61ace22dec4bde1a264978443c1a440edfaa1327d3</citedby><cites>FETCH-LOGICAL-c257t-a505c6b8b6490b17a6b9b3f61ace22dec4bde1a264978443c1a440edfaa1327d3</cites><orcidid>0000-0001-7314-8856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0109659$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Dong, M. D.</creatorcontrib><creatorcontrib>Shen, J. Y.</creatorcontrib><creatorcontrib>Hong, C. Y.</creatorcontrib><creatorcontrib>Ran, P. X.</creatorcontrib><creatorcontrib>He, R.-H.</creatorcontrib><creatorcontrib>Chen, H. W.</creatorcontrib><creatorcontrib>Lu, Q. Y.</creatorcontrib><creatorcontrib>Wu, J.</creatorcontrib><title>Modulation of the NiOx bandgap by controlling oxygen stoichiometry</title><title>Journal of applied physics</title><description>Transition metal oxides are a class of functional materials widely used in optoelectronics, spintronics, and memory technology. The oxygen stoichiometry of these oxides plays a vital role in determining their electronic, optical, and thermal properties. Post-growth annealing in ozone has shown to be effective in modifying these properties. Here, we choose NiO, an antiferromagnetic Mott insulator in perfect stoichiometry, as an example to show that its stoichiometry can be tuned continuously in a broad range by the control of the oxidation power during growth or a post-growth topotactic reduction process. The bandgap of the as-processed NiOx films was modulated in accordance with their resistivity, lattice constant, and Ni chemical valence. This method can be readily applied to other transition metal oxides for the optimization of their properties.</description><subject>Antiferromagnetism</subject><subject>Applied physics</subject><subject>Energy gap</subject><subject>Functional materials</subject><subject>Lattice parameters</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Optoelectronics</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Spintronics</subject><subject>Stoichiometry</subject><subject>Thermodynamic properties</subject><subject>Transition metal oxides</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pwW8Q8KTQ-SZp2uaow38w3UXPIUnTraNrapLJ-u2tbuhB8PQe3h_PAw9C5wQmBDJ2zSdAQGRcHKARgUIkOedwiEYAlCSFyMUxOglhBUBIwcQI3T67ctOoWLsWuwrHpcUv9XyLtWrLheqw7rFxbfSuaep2gd22X9gWh-hqs6zd2kbfn6KjSjXBnu3vGL3d371OH5PZ_OFpejNLDOV5TBQHbjJd6CwVoEmuMi00qzKijKW0tCbVpSWKDu-8SFNmiEpTsGWlFGE0L9kYXexyO-_eNzZEuXIb3w6VkuYMiqxgIAZ1uVPGuxC8rWTn67XyvSQgvyaSXO4nGuzVzgZTx-8NfvCH879QdmX1H_6b_Am0EnSu</recordid><startdate>20221107</startdate><enddate>20221107</enddate><creator>Dong, M. D.</creator><creator>Shen, J. Y.</creator><creator>Hong, C. Y.</creator><creator>Ran, P. X.</creator><creator>He, R.-H.</creator><creator>Chen, H. W.</creator><creator>Lu, Q. Y.</creator><creator>Wu, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7314-8856</orcidid></search><sort><creationdate>20221107</creationdate><title>Modulation of the NiOx bandgap by controlling oxygen stoichiometry</title><author>Dong, M. D. ; Shen, J. Y. ; Hong, C. Y. ; Ran, P. X. ; He, R.-H. ; Chen, H. W. ; Lu, Q. Y. ; Wu, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-a505c6b8b6490b17a6b9b3f61ace22dec4bde1a264978443c1a440edfaa1327d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Applied physics</topic><topic>Energy gap</topic><topic>Functional materials</topic><topic>Lattice parameters</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Optoelectronics</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Spintronics</topic><topic>Stoichiometry</topic><topic>Thermodynamic properties</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, M. D.</creatorcontrib><creatorcontrib>Shen, J. Y.</creatorcontrib><creatorcontrib>Hong, C. Y.</creatorcontrib><creatorcontrib>Ran, P. X.</creatorcontrib><creatorcontrib>He, R.-H.</creatorcontrib><creatorcontrib>Chen, H. W.</creatorcontrib><creatorcontrib>Lu, Q. Y.</creatorcontrib><creatorcontrib>Wu, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, M. D.</au><au>Shen, J. Y.</au><au>Hong, C. Y.</au><au>Ran, P. X.</au><au>He, R.-H.</au><au>Chen, H. W.</au><au>Lu, Q. Y.</au><au>Wu, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of the NiOx bandgap by controlling oxygen stoichiometry</atitle><jtitle>Journal of applied physics</jtitle><date>2022-11-07</date><risdate>2022</risdate><volume>132</volume><issue>17</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Transition metal oxides are a class of functional materials widely used in optoelectronics, spintronics, and memory technology. The oxygen stoichiometry of these oxides plays a vital role in determining their electronic, optical, and thermal properties. Post-growth annealing in ozone has shown to be effective in modifying these properties. Here, we choose NiO, an antiferromagnetic Mott insulator in perfect stoichiometry, as an example to show that its stoichiometry can be tuned continuously in a broad range by the control of the oxidation power during growth or a post-growth topotactic reduction process. The bandgap of the as-processed NiOx films was modulated in accordance with their resistivity, lattice constant, and Ni chemical valence. This method can be readily applied to other transition metal oxides for the optimization of their properties.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0109659</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7314-8856</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-11, Vol.132 (17)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2730868309
source AIP Journals Complete; Alma/SFX Local Collection
subjects Antiferromagnetism
Applied physics
Energy gap
Functional materials
Lattice parameters
Optical properties
Optimization
Optoelectronics
Oxidation
Oxygen
Spintronics
Stoichiometry
Thermodynamic properties
Transition metal oxides
title Modulation of the NiOx bandgap by controlling oxygen stoichiometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T08%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20the%20NiOx%20bandgap%20by%20controlling%20oxygen%20stoichiometry&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Dong,%20M.%20D.&rft.date=2022-11-07&rft.volume=132&rft.issue=17&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0109659&rft_dat=%3Cproquest_cross%3E2730868309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730868309&rft_id=info:pmid/&rfr_iscdi=true