Mechanisms of Testosterone Effects on the Transport Protein P-Glycoprotein

P-glycoprotein (Pgp) is an efflux membrane transport protein that plays an important role in the protection of tumor cells from cytostatics and drug pharmacokinetics. Testosterone is known to be able to reduce Pgp activity and expression, but the mechanisms of its action remain unexplored. The aim o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolutionary biochemistry and physiology 2022-09, Vol.58 (5), p.1514-1522
Hauptverfasser: Slepnev, A. A., Shchulkin, A. V., Abalenikhina, Yu. V., Popova, N. M., Chernykh, I. V., Yakusheva, E. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1522
container_issue 5
container_start_page 1514
container_title Journal of evolutionary biochemistry and physiology
container_volume 58
creator Slepnev, A. A.
Shchulkin, A. V.
Abalenikhina, Yu. V.
Popova, N. M.
Chernykh, I. V.
Yakusheva, E. N.
description P-glycoprotein (Pgp) is an efflux membrane transport protein that plays an important role in the protection of tumor cells from cytostatics and drug pharmacokinetics. Testosterone is known to be able to reduce Pgp activity and expression, but the mechanisms of its action remain unexplored. The aim of this study was to evaluate the mechanism underlying the effect of testosterone on Pgp functioning, specifically, the role of androgen (AR), pregnane X (PXR), and constitutive androstane (CAR) receptors in this mechanism both in vitro and in vivo. In in vitro experiments on Caco-2 cell line, testosterone (1 and 10 µM, 24 h) reduced the Pgp level (Western blotting) compared to the control. The PXR inhibitor ketoconazole (1 and 10 µM, 24 h) did not affect the Pgp level, while the CAR inhibitor CINPA (10 µM) reduced it. The combination of CINPA (10 µM) and testosterone (10 µM) also reduced the Pgp level, however, the latter was not significantly different from the values obtained with CINPA and testosterone applied individually. In in vivo experiments on male Chinchilla rabbits, single intramuscular injection of testosterone undecanoate (24 mg/kg b.w.) increased the serum testosterone level on day 21 compared to the control, whereas after orchiectomy, its content decreased on postoperative day 21. Relative Pgp and CAR levels in the rabbit jejunum decreased after testosterone injection and increased with orchiectomy. PXR and АR levels in the rabbit jejunum did not change significantly. Thus, both in vitro and in vivo experiments demonstrated that testosterone inhibits the CAR and thus reduces the level of the transport protein Pgp.
doi_str_mv 10.1134/S0022093022050210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2730703744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730703744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-249c18b32ef9b13c02d990b872c4dc4b75236eb18f75014dd02e6bfe8ff2cba3</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHPq5NHu9mjlFqVigX3vmyyE9vSJjVJD_33ZlnBg3iZYeZ7DUPILYN7xoR8-ADgHCrR1wlwBmdkxKagCsGBn5NRDxc9fkmuYtwCQKWkHJHXNzTr1m3iPlJvaY0x-ZgweId0bi2alPeOpjXSOrQuHnxIdBV8wo2jq2KxOxl_GMZrcmHbXcSbnz4m9dO8nj0Xy_fFy-xxWRhWqVRwWRmmtOBoK82EAd5VFWhVciM7I3U54WKKmilbToDJrgOOU21RWcuNbsWY3A22OfbrmO9ttv4YXE5seCmgBFFKmVlsYJngYwxom0PY7Ntwahg0_ceaPx_LGj5oYua6Twy_zv-LvgE4pmy6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730703744</pqid></control><display><type>article</type><title>Mechanisms of Testosterone Effects on the Transport Protein P-Glycoprotein</title><source>SpringerLink Journals - AutoHoldings</source><creator>Slepnev, A. A. ; Shchulkin, A. V. ; Abalenikhina, Yu. V. ; Popova, N. M. ; Chernykh, I. V. ; Yakusheva, E. N.</creator><creatorcontrib>Slepnev, A. A. ; Shchulkin, A. V. ; Abalenikhina, Yu. V. ; Popova, N. M. ; Chernykh, I. V. ; Yakusheva, E. N.</creatorcontrib><description>P-glycoprotein (Pgp) is an efflux membrane transport protein that plays an important role in the protection of tumor cells from cytostatics and drug pharmacokinetics. Testosterone is known to be able to reduce Pgp activity and expression, but the mechanisms of its action remain unexplored. The aim of this study was to evaluate the mechanism underlying the effect of testosterone on Pgp functioning, specifically, the role of androgen (AR), pregnane X (PXR), and constitutive androstane (CAR) receptors in this mechanism both in vitro and in vivo. In in vitro experiments on Caco-2 cell line, testosterone (1 and 10 µM, 24 h) reduced the Pgp level (Western blotting) compared to the control. The PXR inhibitor ketoconazole (1 and 10 µM, 24 h) did not affect the Pgp level, while the CAR inhibitor CINPA (10 µM) reduced it. The combination of CINPA (10 µM) and testosterone (10 µM) also reduced the Pgp level, however, the latter was not significantly different from the values obtained with CINPA and testosterone applied individually. In in vivo experiments on male Chinchilla rabbits, single intramuscular injection of testosterone undecanoate (24 mg/kg b.w.) increased the serum testosterone level on day 21 compared to the control, whereas after orchiectomy, its content decreased on postoperative day 21. Relative Pgp and CAR levels in the rabbit jejunum decreased after testosterone injection and increased with orchiectomy. PXR and АR levels in the rabbit jejunum did not change significantly. Thus, both in vitro and in vivo experiments demonstrated that testosterone inhibits the CAR and thus reduces the level of the transport protein Pgp.</description><identifier>ISSN: 0022-0930</identifier><identifier>EISSN: 1608-3202</identifier><identifier>DOI: 10.1134/S0022093022050210</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Animal Physiology ; Biochemistry ; Biomedical and Life Sciences ; Evolutionary Biology ; Experimental Papers ; Experiments ; Glycoproteins ; Jejunum ; Ketoconazole ; Life Sciences ; Membrane proteins ; P-Glycoprotein ; Pharmacokinetics ; Protein transport ; Proteins ; Small intestine ; Testosterone ; Tumor cells ; Western blotting</subject><ispartof>Journal of evolutionary biochemistry and physiology, 2022-09, Vol.58 (5), p.1514-1522</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-249c18b32ef9b13c02d990b872c4dc4b75236eb18f75014dd02e6bfe8ff2cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0022093022050210$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0022093022050210$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Slepnev, A. A.</creatorcontrib><creatorcontrib>Shchulkin, A. V.</creatorcontrib><creatorcontrib>Abalenikhina, Yu. V.</creatorcontrib><creatorcontrib>Popova, N. M.</creatorcontrib><creatorcontrib>Chernykh, I. V.</creatorcontrib><creatorcontrib>Yakusheva, E. N.</creatorcontrib><title>Mechanisms of Testosterone Effects on the Transport Protein P-Glycoprotein</title><title>Journal of evolutionary biochemistry and physiology</title><addtitle>J Evol Biochem Phys</addtitle><description>P-glycoprotein (Pgp) is an efflux membrane transport protein that plays an important role in the protection of tumor cells from cytostatics and drug pharmacokinetics. Testosterone is known to be able to reduce Pgp activity and expression, but the mechanisms of its action remain unexplored. The aim of this study was to evaluate the mechanism underlying the effect of testosterone on Pgp functioning, specifically, the role of androgen (AR), pregnane X (PXR), and constitutive androstane (CAR) receptors in this mechanism both in vitro and in vivo. In in vitro experiments on Caco-2 cell line, testosterone (1 and 10 µM, 24 h) reduced the Pgp level (Western blotting) compared to the control. The PXR inhibitor ketoconazole (1 and 10 µM, 24 h) did not affect the Pgp level, while the CAR inhibitor CINPA (10 µM) reduced it. The combination of CINPA (10 µM) and testosterone (10 µM) also reduced the Pgp level, however, the latter was not significantly different from the values obtained with CINPA and testosterone applied individually. In in vivo experiments on male Chinchilla rabbits, single intramuscular injection of testosterone undecanoate (24 mg/kg b.w.) increased the serum testosterone level on day 21 compared to the control, whereas after orchiectomy, its content decreased on postoperative day 21. Relative Pgp and CAR levels in the rabbit jejunum decreased after testosterone injection and increased with orchiectomy. PXR and АR levels in the rabbit jejunum did not change significantly. Thus, both in vitro and in vivo experiments demonstrated that testosterone inhibits the CAR and thus reduces the level of the transport protein Pgp.</description><subject>Animal Physiology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Evolutionary Biology</subject><subject>Experimental Papers</subject><subject>Experiments</subject><subject>Glycoproteins</subject><subject>Jejunum</subject><subject>Ketoconazole</subject><subject>Life Sciences</subject><subject>Membrane proteins</subject><subject>P-Glycoprotein</subject><subject>Pharmacokinetics</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Small intestine</subject><subject>Testosterone</subject><subject>Tumor cells</subject><subject>Western blotting</subject><issn>0022-0930</issn><issn>1608-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHPq5NHu9mjlFqVigX3vmyyE9vSJjVJD_33ZlnBg3iZYeZ7DUPILYN7xoR8-ADgHCrR1wlwBmdkxKagCsGBn5NRDxc9fkmuYtwCQKWkHJHXNzTr1m3iPlJvaY0x-ZgweId0bi2alPeOpjXSOrQuHnxIdBV8wo2jq2KxOxl_GMZrcmHbXcSbnz4m9dO8nj0Xy_fFy-xxWRhWqVRwWRmmtOBoK82EAd5VFWhVciM7I3U54WKKmilbToDJrgOOU21RWcuNbsWY3A22OfbrmO9ttv4YXE5seCmgBFFKmVlsYJngYwxom0PY7Ntwahg0_ceaPx_LGj5oYua6Twy_zv-LvgE4pmy6</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Slepnev, A. A.</creator><creator>Shchulkin, A. V.</creator><creator>Abalenikhina, Yu. V.</creator><creator>Popova, N. M.</creator><creator>Chernykh, I. V.</creator><creator>Yakusheva, E. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>20220901</creationdate><title>Mechanisms of Testosterone Effects on the Transport Protein P-Glycoprotein</title><author>Slepnev, A. A. ; Shchulkin, A. V. ; Abalenikhina, Yu. V. ; Popova, N. M. ; Chernykh, I. V. ; Yakusheva, E. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-249c18b32ef9b13c02d990b872c4dc4b75236eb18f75014dd02e6bfe8ff2cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal Physiology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Evolutionary Biology</topic><topic>Experimental Papers</topic><topic>Experiments</topic><topic>Glycoproteins</topic><topic>Jejunum</topic><topic>Ketoconazole</topic><topic>Life Sciences</topic><topic>Membrane proteins</topic><topic>P-Glycoprotein</topic><topic>Pharmacokinetics</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Small intestine</topic><topic>Testosterone</topic><topic>Tumor cells</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slepnev, A. A.</creatorcontrib><creatorcontrib>Shchulkin, A. V.</creatorcontrib><creatorcontrib>Abalenikhina, Yu. V.</creatorcontrib><creatorcontrib>Popova, N. M.</creatorcontrib><creatorcontrib>Chernykh, I. V.</creatorcontrib><creatorcontrib>Yakusheva, E. N.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of evolutionary biochemistry and physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slepnev, A. A.</au><au>Shchulkin, A. V.</au><au>Abalenikhina, Yu. V.</au><au>Popova, N. M.</au><au>Chernykh, I. V.</au><au>Yakusheva, E. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Testosterone Effects on the Transport Protein P-Glycoprotein</atitle><jtitle>Journal of evolutionary biochemistry and physiology</jtitle><stitle>J Evol Biochem Phys</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>58</volume><issue>5</issue><spage>1514</spage><epage>1522</epage><pages>1514-1522</pages><issn>0022-0930</issn><eissn>1608-3202</eissn><abstract>P-glycoprotein (Pgp) is an efflux membrane transport protein that plays an important role in the protection of tumor cells from cytostatics and drug pharmacokinetics. Testosterone is known to be able to reduce Pgp activity and expression, but the mechanisms of its action remain unexplored. The aim of this study was to evaluate the mechanism underlying the effect of testosterone on Pgp functioning, specifically, the role of androgen (AR), pregnane X (PXR), and constitutive androstane (CAR) receptors in this mechanism both in vitro and in vivo. In in vitro experiments on Caco-2 cell line, testosterone (1 and 10 µM, 24 h) reduced the Pgp level (Western blotting) compared to the control. The PXR inhibitor ketoconazole (1 and 10 µM, 24 h) did not affect the Pgp level, while the CAR inhibitor CINPA (10 µM) reduced it. The combination of CINPA (10 µM) and testosterone (10 µM) also reduced the Pgp level, however, the latter was not significantly different from the values obtained with CINPA and testosterone applied individually. In in vivo experiments on male Chinchilla rabbits, single intramuscular injection of testosterone undecanoate (24 mg/kg b.w.) increased the serum testosterone level on day 21 compared to the control, whereas after orchiectomy, its content decreased on postoperative day 21. Relative Pgp and CAR levels in the rabbit jejunum decreased after testosterone injection and increased with orchiectomy. PXR and АR levels in the rabbit jejunum did not change significantly. Thus, both in vitro and in vivo experiments demonstrated that testosterone inhibits the CAR and thus reduces the level of the transport protein Pgp.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0022093022050210</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0930
ispartof Journal of evolutionary biochemistry and physiology, 2022-09, Vol.58 (5), p.1514-1522
issn 0022-0930
1608-3202
language eng
recordid cdi_proquest_journals_2730703744
source SpringerLink Journals - AutoHoldings
subjects Animal Physiology
Biochemistry
Biomedical and Life Sciences
Evolutionary Biology
Experimental Papers
Experiments
Glycoproteins
Jejunum
Ketoconazole
Life Sciences
Membrane proteins
P-Glycoprotein
Pharmacokinetics
Protein transport
Proteins
Small intestine
Testosterone
Tumor cells
Western blotting
title Mechanisms of Testosterone Effects on the Transport Protein P-Glycoprotein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Testosterone%20Effects%20on%20the%20Transport%20Protein%20P-Glycoprotein&rft.jtitle=Journal%20of%20evolutionary%20biochemistry%20and%20physiology&rft.au=Slepnev,%20A.%20A.&rft.date=2022-09-01&rft.volume=58&rft.issue=5&rft.spage=1514&rft.epage=1522&rft.pages=1514-1522&rft.issn=0022-0930&rft.eissn=1608-3202&rft_id=info:doi/10.1134/S0022093022050210&rft_dat=%3Cproquest_cross%3E2730703744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730703744&rft_id=info:pmid/&rfr_iscdi=true