ELEMENTARY EQUIVALENCE THEOREM FOR PAC STRUCTURES
We generalize a well-known theorem binding the elementary equivalence relation on the level of PAC fields and the isomorphism type of their absolute Galois groups. Our results concern two cases: saturated PAC structures and nonsaturated PAC structures.
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2020-12, Vol.85 (4), p.1467-1498 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1498 |
---|---|
container_issue | 4 |
container_start_page | 1467 |
container_title | The Journal of symbolic logic |
container_volume | 85 |
creator | DOBROWOLSKI, JAN HOFFMANN, DANIEL MAX LEE, JUNGUK |
description | We generalize a well-known theorem binding the elementary equivalence relation on the level of PAC fields and the isomorphism type of their absolute Galois groups. Our results concern two cases: saturated PAC structures and nonsaturated PAC structures. |
doi_str_mv | 10.1017/jsl.2020.61 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2730669486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730669486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-f1d84b1d76ed2f0e5634a7f632c1ba940556b4d7fcd8de1652a86dfcd7cbe2cc3</originalsourceid><addsrcrecordid>eNotkE9Lw0AUxBdRsFZPfoGAR0l9b7N52R5D2P6BtNE0ETwtye4GLNXWbHvw25tST8PAMDP8GHtEmCBg8rL1uwkHDhPCKzbCqYjCWEq6ZiMAzkMhkd-yO--3ABBPhRwxVLlaqXWVlh-BequX72mu1pkKqoUqSrUKZkUZvKZZsKnKOqvqUm3u2U3X7Lx7-Ncxq2eqyhZhXsyXWZqHhhMeww6tFC3ahJzlHbiYItEkHUXcYNtMBcQxtcImnbHSOqSYN5Ls4BLTOm5MNGZPl95Dv_85OX_U2_2p_x4mNU8iIBr-05B6vqRMv_e-d50-9J9fTf-rEfSZiR6Y6DMTTRj9AYblT6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730669486</pqid></control><display><type>article</type><title>ELEMENTARY EQUIVALENCE THEOREM FOR PAC STRUCTURES</title><source>Cambridge University Press Journals Complete</source><creator>DOBROWOLSKI, JAN ; HOFFMANN, DANIEL MAX ; LEE, JUNGUK</creator><creatorcontrib>DOBROWOLSKI, JAN ; HOFFMANN, DANIEL MAX ; LEE, JUNGUK</creatorcontrib><description>We generalize a well-known theorem binding the elementary equivalence relation on the level of PAC fields and the isomorphism type of their absolute Galois groups. Our results concern two cases: saturated PAC structures and nonsaturated PAC structures.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2020.61</identifier><language>eng</language><publisher>Pasadena: Cambridge University Press</publisher><subject>Language ; Logic ; Mathematics ; Philosophy ; Structuralism</subject><ispartof>The Journal of symbolic logic, 2020-12, Vol.85 (4), p.1467-1498</ispartof><rights>The Association for Symbolic Logic 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-f1d84b1d76ed2f0e5634a7f632c1ba940556b4d7fcd8de1652a86dfcd7cbe2cc3</citedby><cites>FETCH-LOGICAL-c261t-f1d84b1d76ed2f0e5634a7f632c1ba940556b4d7fcd8de1652a86dfcd7cbe2cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>DOBROWOLSKI, JAN</creatorcontrib><creatorcontrib>HOFFMANN, DANIEL MAX</creatorcontrib><creatorcontrib>LEE, JUNGUK</creatorcontrib><title>ELEMENTARY EQUIVALENCE THEOREM FOR PAC STRUCTURES</title><title>The Journal of symbolic logic</title><description>We generalize a well-known theorem binding the elementary equivalence relation on the level of PAC fields and the isomorphism type of their absolute Galois groups. Our results concern two cases: saturated PAC structures and nonsaturated PAC structures.</description><subject>Language</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Philosophy</subject><subject>Structuralism</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE9Lw0AUxBdRsFZPfoGAR0l9b7N52R5D2P6BtNE0ETwtye4GLNXWbHvw25tST8PAMDP8GHtEmCBg8rL1uwkHDhPCKzbCqYjCWEq6ZiMAzkMhkd-yO--3ABBPhRwxVLlaqXWVlh-BequX72mu1pkKqoUqSrUKZkUZvKZZsKnKOqvqUm3u2U3X7Lx7-Ncxq2eqyhZhXsyXWZqHhhMeww6tFC3ahJzlHbiYItEkHUXcYNtMBcQxtcImnbHSOqSYN5Ls4BLTOm5MNGZPl95Dv_85OX_U2_2p_x4mNU8iIBr-05B6vqRMv_e-d50-9J9fTf-rEfSZiR6Y6DMTTRj9AYblT6g</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>DOBROWOLSKI, JAN</creator><creator>HOFFMANN, DANIEL MAX</creator><creator>LEE, JUNGUK</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AABKS</scope><scope>ABSDQ</scope></search><sort><creationdate>202012</creationdate><title>ELEMENTARY EQUIVALENCE THEOREM FOR PAC STRUCTURES</title><author>DOBROWOLSKI, JAN ; HOFFMANN, DANIEL MAX ; LEE, JUNGUK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-f1d84b1d76ed2f0e5634a7f632c1ba940556b4d7fcd8de1652a86dfcd7cbe2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Language</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Philosophy</topic><topic>Structuralism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOBROWOLSKI, JAN</creatorcontrib><creatorcontrib>HOFFMANN, DANIEL MAX</creatorcontrib><creatorcontrib>LEE, JUNGUK</creatorcontrib><collection>CrossRef</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOBROWOLSKI, JAN</au><au>HOFFMANN, DANIEL MAX</au><au>LEE, JUNGUK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ELEMENTARY EQUIVALENCE THEOREM FOR PAC STRUCTURES</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2020-12</date><risdate>2020</risdate><volume>85</volume><issue>4</issue><spage>1467</spage><epage>1498</epage><pages>1467-1498</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We generalize a well-known theorem binding the elementary equivalence relation on the level of PAC fields and the isomorphism type of their absolute Galois groups. Our results concern two cases: saturated PAC structures and nonsaturated PAC structures.</abstract><cop>Pasadena</cop><pub>Cambridge University Press</pub><doi>10.1017/jsl.2020.61</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 2020-12, Vol.85 (4), p.1467-1498 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_proquest_journals_2730669486 |
source | Cambridge University Press Journals Complete |
subjects | Language Logic Mathematics Philosophy Structuralism |
title | ELEMENTARY EQUIVALENCE THEOREM FOR PAC STRUCTURES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ELEMENTARY%20EQUIVALENCE%20THEOREM%20FOR%20PAC%20STRUCTURES&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=DOBROWOLSKI,%20JAN&rft.date=2020-12&rft.volume=85&rft.issue=4&rft.spage=1467&rft.epage=1498&rft.pages=1467-1498&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2020.61&rft_dat=%3Cproquest_cross%3E2730669486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730669486&rft_id=info:pmid/&rfr_iscdi=true |