REVISITING THE RECTANGULAR CONSTANT IN BANACH SPACES

Let X be a real Banach space. The rectangular constant $\mu (X)$ and some generalisations of it, $\mu _p(X)$ for $p \geq 1$ , were introduced by Gastinel and Joly around half a century ago. In this paper we make precise some characterisations of inner product spaces by using $\mu _p(X)$ , correcting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2022-02, Vol.105 (1), p.124-133
Hauptverfasser: BARONTI, M., CASINI, E., PAPINI, P. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a real Banach space. The rectangular constant $\mu (X)$ and some generalisations of it, $\mu _p(X)$ for $p \geq 1$ , were introduced by Gastinel and Joly around half a century ago. In this paper we make precise some characterisations of inner product spaces by using $\mu _p(X)$ , correcting some statements appearing in the literature, and extend to $\mu _p(X)$ some characterisations of uniformly nonsquare spaces, known only for $\mu (X)$ . We also give a characterisation of two-dimensional spaces with hexagonal norms. Finally, we indicate some new upper estimates concerning $\mu (l_p)$ and $\mu _p(l_p)$ .
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972721000253