REVISITING THE RECTANGULAR CONSTANT IN BANACH SPACES
Let X be a real Banach space. The rectangular constant $\mu (X)$ and some generalisations of it, $\mu _p(X)$ for $p \geq 1$ , were introduced by Gastinel and Joly around half a century ago. In this paper we make precise some characterisations of inner product spaces by using $\mu _p(X)$ , correcting...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2022-02, Vol.105 (1), p.124-133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X be a real Banach space. The rectangular constant
$\mu (X)$
and some generalisations of it,
$\mu _p(X)$
for
$p \geq 1$
, were introduced by Gastinel and Joly around half a century ago. In this paper we make precise some characterisations of inner product spaces by using
$\mu _p(X)$
, correcting some statements appearing in the literature, and extend to
$\mu _p(X)$
some characterisations of uniformly nonsquare spaces, known only for
$\mu (X)$
. We also give a characterisation of two-dimensional spaces with hexagonal norms. Finally, we indicate some new upper estimates concerning
$\mu (l_p)$
and
$\mu _p(l_p)$
. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972721000253 |