UNIFORM ASYMPTOTIC FORMULAS FOR RESTRICTED BIPARTITE PARTITIONS

In this paper, we investigate $\unicode[STIX]{x1D70B}(m,n)$, the number of partitions of the bipartite number$(m,n)$ into steadily decreasing parts, introduced by Carlitz [‘A problem in partitions’, Duke Math. J.30 (1963), 203–213]. We give a relation between $\unicode[STIX]{x1D70B}(m,n)$ and the cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2020-10, Vol.102 (2), p.217-225
1. Verfasser: ZHOU, NIAN HONG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 2
container_start_page 217
container_title Bulletin of the Australian Mathematical Society
container_volume 102
creator ZHOU, NIAN HONG
description In this paper, we investigate $\unicode[STIX]{x1D70B}(m,n)$, the number of partitions of the bipartite number$(m,n)$ into steadily decreasing parts, introduced by Carlitz [‘A problem in partitions’, Duke Math. J.30 (1963), 203–213]. We give a relation between $\unicode[STIX]{x1D70B}(m,n)$ and the crank statistic $M(m,n)$ for integer partitions. Using this relation, we establish some uniform asymptotic formulas for $\unicode[STIX]{x1D70B}(m,n)$.
doi_str_mv 10.1017/S0004972720000064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2730635646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972720000064</cupid><sourcerecordid>2730635646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-9c338591e3629949df3fccb1f04f1a88579056548e789e3896ce6f91145bcbcf3</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWP0AdwHX0ZnMeyUxpjrQNiWZLFyFZDojLdbWSbvw701IwYV4N-dezuPCAeAWwXsEEX8oIYRE8pjHcBhGzkCAOKURYhifg2Cgo4G_BFddt-kvSmMRgMdqoaZ5MQ-T8m2-1LlWaTjc1SwphyUsslIXKtXZc_iklkmhlc7CEVW-KK_BhWs-OntzwgmopplOX6NZ_qLSZBYZjPghkgZjQSWymMVSErly2BnTIgeJQ40QlEtIGSXCciEtFpIZy5xEiNDWtMbhCbgbc_d-93W03aHe7I7-s39ZxxxDhikjrFehUWX8ruu8dfXer7eN_64RrIee6j899R588jTb1q9X7_Y3-n_XD5hxYpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730635646</pqid></control><display><type>article</type><title>UNIFORM ASYMPTOTIC FORMULAS FOR RESTRICTED BIPARTITE PARTITIONS</title><source>Cambridge University Press Journals Complete</source><creator>ZHOU, NIAN HONG</creator><creatorcontrib>ZHOU, NIAN HONG</creatorcontrib><description>In this paper, we investigate $\unicode[STIX]{x1D70B}(m,n)$, the number of partitions of the bipartite number$(m,n)$ into steadily decreasing parts, introduced by Carlitz [‘A problem in partitions’, Duke Math. J.30 (1963), 203–213]. We give a relation between $\unicode[STIX]{x1D70B}(m,n)$ and the crank statistic $M(m,n)$ for integer partitions. Using this relation, we establish some uniform asymptotic formulas for $\unicode[STIX]{x1D70B}(m,n)$.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972720000064</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic properties</subject><ispartof>Bulletin of the Australian Mathematical Society, 2020-10, Vol.102 (2), p.217-225</ispartof><rights>2020 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-9c338591e3629949df3fccb1f04f1a88579056548e789e3896ce6f91145bcbcf3</citedby><cites>FETCH-LOGICAL-c317t-9c338591e3629949df3fccb1f04f1a88579056548e789e3896ce6f91145bcbcf3</cites><orcidid>0000-0003-2889-5312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972720000064/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27915,27916,55619</link.rule.ids></links><search><creatorcontrib>ZHOU, NIAN HONG</creatorcontrib><title>UNIFORM ASYMPTOTIC FORMULAS FOR RESTRICTED BIPARTITE PARTITIONS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>In this paper, we investigate $\unicode[STIX]{x1D70B}(m,n)$, the number of partitions of the bipartite number$(m,n)$ into steadily decreasing parts, introduced by Carlitz [‘A problem in partitions’, Duke Math. J.30 (1963), 203–213]. We give a relation between $\unicode[STIX]{x1D70B}(m,n)$ and the crank statistic $M(m,n)$ for integer partitions. Using this relation, we establish some uniform asymptotic formulas for $\unicode[STIX]{x1D70B}(m,n)$.</description><subject>Asymptotic properties</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKw0AUHUTBWP0AdwHX0ZnMeyUxpjrQNiWZLFyFZDojLdbWSbvw701IwYV4N-dezuPCAeAWwXsEEX8oIYRE8pjHcBhGzkCAOKURYhifg2Cgo4G_BFddt-kvSmMRgMdqoaZ5MQ-T8m2-1LlWaTjc1SwphyUsslIXKtXZc_iklkmhlc7CEVW-KK_BhWs-OntzwgmopplOX6NZ_qLSZBYZjPghkgZjQSWymMVSErly2BnTIgeJQ40QlEtIGSXCciEtFpIZy5xEiNDWtMbhCbgbc_d-93W03aHe7I7-s39ZxxxDhikjrFehUWX8ruu8dfXer7eN_64RrIee6j899R588jTb1q9X7_Y3-n_XD5hxYpM</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>ZHOU, NIAN HONG</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2889-5312</orcidid></search><sort><creationdate>20201001</creationdate><title>UNIFORM ASYMPTOTIC FORMULAS FOR RESTRICTED BIPARTITE PARTITIONS</title><author>ZHOU, NIAN HONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-9c338591e3629949df3fccb1f04f1a88579056548e789e3896ce6f91145bcbcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHOU, NIAN HONG</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHOU, NIAN HONG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UNIFORM ASYMPTOTIC FORMULAS FOR RESTRICTED BIPARTITE PARTITIONS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>102</volume><issue>2</issue><spage>217</spage><epage>225</epage><pages>217-225</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>In this paper, we investigate $\unicode[STIX]{x1D70B}(m,n)$, the number of partitions of the bipartite number$(m,n)$ into steadily decreasing parts, introduced by Carlitz [‘A problem in partitions’, Duke Math. J.30 (1963), 203–213]. We give a relation between $\unicode[STIX]{x1D70B}(m,n)$ and the crank statistic $M(m,n)$ for integer partitions. Using this relation, we establish some uniform asymptotic formulas for $\unicode[STIX]{x1D70B}(m,n)$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972720000064</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2889-5312</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2020-10, Vol.102 (2), p.217-225
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_2730635646
source Cambridge University Press Journals Complete
subjects Asymptotic properties
title UNIFORM ASYMPTOTIC FORMULAS FOR RESTRICTED BIPARTITE PARTITIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UNIFORM%20ASYMPTOTIC%20FORMULAS%20FOR%20RESTRICTED%20BIPARTITE%20PARTITIONS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=ZHOU,%20NIAN%20HONG&rft.date=2020-10-01&rft.volume=102&rft.issue=2&rft.spage=217&rft.epage=225&rft.pages=217-225&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972720000064&rft_dat=%3Cproquest_cross%3E2730635646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730635646&rft_id=info:pmid/&rft_cupid=10_1017_S0004972720000064&rfr_iscdi=true