Mechanical properties of aluminum/SiNT nanocomposite

Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-12, Vol.236 (23), p.11322-11329
Hauptverfasser: Motamedi, Mohsen, Mehrvar, Ali, Nikzad, Mohamadhossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11329
container_issue 23
container_start_page 11322
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 236
creator Motamedi, Mohsen
Mehrvar, Ali
Nikzad, Mohamadhossein
description Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress and Young’s modulus of the nanocomposite were evaluated using molecular dynamics simulation. According to the results, Young’s modulus of the nanocomposite decreased with increasing temperature. Also, Young’s modulus decreased by increasing the strain rate. Next, an experimental approach was used based on the Box–Behnken design. According to the input parameters and the experimental approach, the number of simulations in the software was 39 runs. Overall, it is concluded that the optimal conditions were created at a temperature of 50 K, a strain rate of 0.01/ps, and chirality of (5,5), leading to the elasticity modulus of 137 GPa and the ultimate tensile stress of 11.8 GPa.
doi_str_mv 10.1177/09544062221112798
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2730034986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062221112798</sage_id><sourcerecordid>2730034986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-3af580dbb1a7caba629da4ca6bafc587b0a60627e52abd01f6ec957874edcb5c3</originalsourceid><addsrcrecordid>eNp1kL1OxDAQhC0EEuHgAegiUefOdvyTlOgEHNIBBUcdrR0bfEriYCcFb0-iIFEgttliv5kdDULXBK8JkXKDS84YFpRSQgiVZXGCEooZyWhZ5Kcome_ZDJyjixiPeBoqeILYk9Ef0DkNTdoH35swOBNTb1NoxtZ1Y7t5dc-HtIPOa9_2PrrBXKIzC000Vz97hd7u7w7bXbZ_eXjc3u4zTRkdshwsL3CtFAGpQYGgZQ1Mg1BgNS-kwiCmRNJwCqrGxAqjSy4LyUytFdf5Ct0svlOyz9HEoTr6MXTTy4rKHOOclYWYKLJQOvgYg7FVH1wL4asiuJrLqf6UM2nWiybCu_l1_V_wDfvkZD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730034986</pqid></control><display><type>article</type><title>Mechanical properties of aluminum/SiNT nanocomposite</title><source>Access via SAGE</source><creator>Motamedi, Mohsen ; Mehrvar, Ali ; Nikzad, Mohamadhossein</creator><creatorcontrib>Motamedi, Mohsen ; Mehrvar, Ali ; Nikzad, Mohamadhossein</creatorcontrib><description>Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress and Young’s modulus of the nanocomposite were evaluated using molecular dynamics simulation. According to the results, Young’s modulus of the nanocomposite decreased with increasing temperature. Also, Young’s modulus decreased by increasing the strain rate. Next, an experimental approach was used based on the Box–Behnken design. According to the input parameters and the experimental approach, the number of simulations in the software was 39 runs. Overall, it is concluded that the optimal conditions were created at a temperature of 50 K, a strain rate of 0.01/ps, and chirality of (5,5), leading to the elasticity modulus of 137 GPa and the ultimate tensile stress of 11.8 GPa.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062221112798</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aluminum ; Chirality ; Dynamic mechanical properties ; Mechanical properties ; Modulus of elasticity ; Molecular dynamics ; Nanocomposites ; Nanotubes ; Simulation ; Strain rate ; Tensile stress</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-12, Vol.236 (23), p.11322-11329</ispartof><rights>IMechE 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-3af580dbb1a7caba629da4ca6bafc587b0a60627e52abd01f6ec957874edcb5c3</citedby><cites>FETCH-LOGICAL-c242t-3af580dbb1a7caba629da4ca6bafc587b0a60627e52abd01f6ec957874edcb5c3</cites><orcidid>0000-0003-0138-3632 ; 0000-0003-3296-4253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062221112798$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062221112798$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Motamedi, Mohsen</creatorcontrib><creatorcontrib>Mehrvar, Ali</creatorcontrib><creatorcontrib>Nikzad, Mohamadhossein</creatorcontrib><title>Mechanical properties of aluminum/SiNT nanocomposite</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress and Young’s modulus of the nanocomposite were evaluated using molecular dynamics simulation. According to the results, Young’s modulus of the nanocomposite decreased with increasing temperature. Also, Young’s modulus decreased by increasing the strain rate. Next, an experimental approach was used based on the Box–Behnken design. According to the input parameters and the experimental approach, the number of simulations in the software was 39 runs. Overall, it is concluded that the optimal conditions were created at a temperature of 50 K, a strain rate of 0.01/ps, and chirality of (5,5), leading to the elasticity modulus of 137 GPa and the ultimate tensile stress of 11.8 GPa.</description><subject>Aluminum</subject><subject>Chirality</subject><subject>Dynamic mechanical properties</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Simulation</subject><subject>Strain rate</subject><subject>Tensile stress</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OxDAQhC0EEuHgAegiUefOdvyTlOgEHNIBBUcdrR0bfEriYCcFb0-iIFEgttliv5kdDULXBK8JkXKDS84YFpRSQgiVZXGCEooZyWhZ5Kcome_ZDJyjixiPeBoqeILYk9Ef0DkNTdoH35swOBNTb1NoxtZ1Y7t5dc-HtIPOa9_2PrrBXKIzC000Vz97hd7u7w7bXbZ_eXjc3u4zTRkdshwsL3CtFAGpQYGgZQ1Mg1BgNS-kwiCmRNJwCqrGxAqjSy4LyUytFdf5Ct0svlOyz9HEoTr6MXTTy4rKHOOclYWYKLJQOvgYg7FVH1wL4asiuJrLqf6UM2nWiybCu_l1_V_wDfvkZD4</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Motamedi, Mohsen</creator><creator>Mehrvar, Ali</creator><creator>Nikzad, Mohamadhossein</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-0138-3632</orcidid><orcidid>https://orcid.org/0000-0003-3296-4253</orcidid></search><sort><creationdate>202212</creationdate><title>Mechanical properties of aluminum/SiNT nanocomposite</title><author>Motamedi, Mohsen ; Mehrvar, Ali ; Nikzad, Mohamadhossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-3af580dbb1a7caba629da4ca6bafc587b0a60627e52abd01f6ec957874edcb5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Chirality</topic><topic>Dynamic mechanical properties</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Simulation</topic><topic>Strain rate</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motamedi, Mohsen</creatorcontrib><creatorcontrib>Mehrvar, Ali</creatorcontrib><creatorcontrib>Nikzad, Mohamadhossein</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motamedi, Mohsen</au><au>Mehrvar, Ali</au><au>Nikzad, Mohamadhossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of aluminum/SiNT nanocomposite</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-12</date><risdate>2022</risdate><volume>236</volume><issue>23</issue><spage>11322</spage><epage>11329</epage><pages>11322-11329</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress and Young’s modulus of the nanocomposite were evaluated using molecular dynamics simulation. According to the results, Young’s modulus of the nanocomposite decreased with increasing temperature. Also, Young’s modulus decreased by increasing the strain rate. Next, an experimental approach was used based on the Box–Behnken design. According to the input parameters and the experimental approach, the number of simulations in the software was 39 runs. Overall, it is concluded that the optimal conditions were created at a temperature of 50 K, a strain rate of 0.01/ps, and chirality of (5,5), leading to the elasticity modulus of 137 GPa and the ultimate tensile stress of 11.8 GPa.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062221112798</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0138-3632</orcidid><orcidid>https://orcid.org/0000-0003-3296-4253</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-12, Vol.236 (23), p.11322-11329
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_2730034986
source Access via SAGE
subjects Aluminum
Chirality
Dynamic mechanical properties
Mechanical properties
Modulus of elasticity
Molecular dynamics
Nanocomposites
Nanotubes
Simulation
Strain rate
Tensile stress
title Mechanical properties of aluminum/SiNT nanocomposite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20aluminum/SiNT%20nanocomposite&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Motamedi,%20Mohsen&rft.date=2022-12&rft.volume=236&rft.issue=23&rft.spage=11322&rft.epage=11329&rft.pages=11322-11329&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062221112798&rft_dat=%3Cproquest_cross%3E2730034986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730034986&rft_id=info:pmid/&rft_sage_id=10.1177_09544062221112798&rfr_iscdi=true