Mechanical properties of aluminum/SiNT nanocomposite
Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-12, Vol.236 (23), p.11322-11329 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11329 |
---|---|
container_issue | 23 |
container_start_page | 11322 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science |
container_volume | 236 |
creator | Motamedi, Mohsen Mehrvar, Ali Nikzad, Mohamadhossein |
description | Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress and Young’s modulus of the nanocomposite were evaluated using molecular dynamics simulation. According to the results, Young’s modulus of the nanocomposite decreased with increasing temperature. Also, Young’s modulus decreased by increasing the strain rate. Next, an experimental approach was used based on the Box–Behnken design. According to the input parameters and the experimental approach, the number of simulations in the software was 39 runs. Overall, it is concluded that the optimal conditions were created at a temperature of 50 K, a strain rate of 0.01/ps, and chirality of (5,5), leading to the elasticity modulus of 137 GPa and the ultimate tensile stress of 11.8 GPa. |
doi_str_mv | 10.1177/09544062221112798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2730034986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062221112798</sage_id><sourcerecordid>2730034986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-3af580dbb1a7caba629da4ca6bafc587b0a60627e52abd01f6ec957874edcb5c3</originalsourceid><addsrcrecordid>eNp1kL1OxDAQhC0EEuHgAegiUefOdvyTlOgEHNIBBUcdrR0bfEriYCcFb0-iIFEgttliv5kdDULXBK8JkXKDS84YFpRSQgiVZXGCEooZyWhZ5Kcome_ZDJyjixiPeBoqeILYk9Ef0DkNTdoH35swOBNTb1NoxtZ1Y7t5dc-HtIPOa9_2PrrBXKIzC000Vz97hd7u7w7bXbZ_eXjc3u4zTRkdshwsL3CtFAGpQYGgZQ1Mg1BgNS-kwiCmRNJwCqrGxAqjSy4LyUytFdf5Ct0svlOyz9HEoTr6MXTTy4rKHOOclYWYKLJQOvgYg7FVH1wL4asiuJrLqf6UM2nWiybCu_l1_V_wDfvkZD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730034986</pqid></control><display><type>article</type><title>Mechanical properties of aluminum/SiNT nanocomposite</title><source>Access via SAGE</source><creator>Motamedi, Mohsen ; Mehrvar, Ali ; Nikzad, Mohamadhossein</creator><creatorcontrib>Motamedi, Mohsen ; Mehrvar, Ali ; Nikzad, Mohamadhossein</creatorcontrib><description>Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress and Young’s modulus of the nanocomposite were evaluated using molecular dynamics simulation. According to the results, Young’s modulus of the nanocomposite decreased with increasing temperature. Also, Young’s modulus decreased by increasing the strain rate. Next, an experimental approach was used based on the Box–Behnken design. According to the input parameters and the experimental approach, the number of simulations in the software was 39 runs. Overall, it is concluded that the optimal conditions were created at a temperature of 50 K, a strain rate of 0.01/ps, and chirality of (5,5), leading to the elasticity modulus of 137 GPa and the ultimate tensile stress of 11.8 GPa.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062221112798</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aluminum ; Chirality ; Dynamic mechanical properties ; Mechanical properties ; Modulus of elasticity ; Molecular dynamics ; Nanocomposites ; Nanotubes ; Simulation ; Strain rate ; Tensile stress</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-12, Vol.236 (23), p.11322-11329</ispartof><rights>IMechE 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-3af580dbb1a7caba629da4ca6bafc587b0a60627e52abd01f6ec957874edcb5c3</citedby><cites>FETCH-LOGICAL-c242t-3af580dbb1a7caba629da4ca6bafc587b0a60627e52abd01f6ec957874edcb5c3</cites><orcidid>0000-0003-0138-3632 ; 0000-0003-3296-4253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062221112798$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062221112798$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Motamedi, Mohsen</creatorcontrib><creatorcontrib>Mehrvar, Ali</creatorcontrib><creatorcontrib>Nikzad, Mohamadhossein</creatorcontrib><title>Mechanical properties of aluminum/SiNT nanocomposite</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress and Young’s modulus of the nanocomposite were evaluated using molecular dynamics simulation. According to the results, Young’s modulus of the nanocomposite decreased with increasing temperature. Also, Young’s modulus decreased by increasing the strain rate. Next, an experimental approach was used based on the Box–Behnken design. According to the input parameters and the experimental approach, the number of simulations in the software was 39 runs. Overall, it is concluded that the optimal conditions were created at a temperature of 50 K, a strain rate of 0.01/ps, and chirality of (5,5), leading to the elasticity modulus of 137 GPa and the ultimate tensile stress of 11.8 GPa.</description><subject>Aluminum</subject><subject>Chirality</subject><subject>Dynamic mechanical properties</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Simulation</subject><subject>Strain rate</subject><subject>Tensile stress</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OxDAQhC0EEuHgAegiUefOdvyTlOgEHNIBBUcdrR0bfEriYCcFb0-iIFEgttliv5kdDULXBK8JkXKDS84YFpRSQgiVZXGCEooZyWhZ5Kcome_ZDJyjixiPeBoqeILYk9Ef0DkNTdoH35swOBNTb1NoxtZ1Y7t5dc-HtIPOa9_2PrrBXKIzC000Vz97hd7u7w7bXbZ_eXjc3u4zTRkdshwsL3CtFAGpQYGgZQ1Mg1BgNS-kwiCmRNJwCqrGxAqjSy4LyUytFdf5Ct0svlOyz9HEoTr6MXTTy4rKHOOclYWYKLJQOvgYg7FVH1wL4asiuJrLqf6UM2nWiybCu_l1_V_wDfvkZD4</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Motamedi, Mohsen</creator><creator>Mehrvar, Ali</creator><creator>Nikzad, Mohamadhossein</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-0138-3632</orcidid><orcidid>https://orcid.org/0000-0003-3296-4253</orcidid></search><sort><creationdate>202212</creationdate><title>Mechanical properties of aluminum/SiNT nanocomposite</title><author>Motamedi, Mohsen ; Mehrvar, Ali ; Nikzad, Mohamadhossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-3af580dbb1a7caba629da4ca6bafc587b0a60627e52abd01f6ec957874edcb5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Chirality</topic><topic>Dynamic mechanical properties</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Simulation</topic><topic>Strain rate</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motamedi, Mohsen</creatorcontrib><creatorcontrib>Mehrvar, Ali</creatorcontrib><creatorcontrib>Nikzad, Mohamadhossein</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motamedi, Mohsen</au><au>Mehrvar, Ali</au><au>Nikzad, Mohamadhossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of aluminum/SiNT nanocomposite</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-12</date><risdate>2022</risdate><volume>236</volume><issue>23</issue><spage>11322</spage><epage>11329</epage><pages>11322-11329</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Molecular dynamics simulation is among the most significant methods in nanoscale studies. This paper studied the effect of strain rate, temperature, and nanotube chirality on the stress-strain behavior of aluminum/silicon nanotubes (SiNTs) using molecular dynamics simulation. Ultimate tensile stress and Young’s modulus of the nanocomposite were evaluated using molecular dynamics simulation. According to the results, Young’s modulus of the nanocomposite decreased with increasing temperature. Also, Young’s modulus decreased by increasing the strain rate. Next, an experimental approach was used based on the Box–Behnken design. According to the input parameters and the experimental approach, the number of simulations in the software was 39 runs. Overall, it is concluded that the optimal conditions were created at a temperature of 50 K, a strain rate of 0.01/ps, and chirality of (5,5), leading to the elasticity modulus of 137 GPa and the ultimate tensile stress of 11.8 GPa.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062221112798</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0138-3632</orcidid><orcidid>https://orcid.org/0000-0003-3296-4253</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4062 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-12, Vol.236 (23), p.11322-11329 |
issn | 0954-4062 2041-2983 |
language | eng |
recordid | cdi_proquest_journals_2730034986 |
source | Access via SAGE |
subjects | Aluminum Chirality Dynamic mechanical properties Mechanical properties Modulus of elasticity Molecular dynamics Nanocomposites Nanotubes Simulation Strain rate Tensile stress |
title | Mechanical properties of aluminum/SiNT nanocomposite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20aluminum/SiNT%20nanocomposite&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Motamedi,%20Mohsen&rft.date=2022-12&rft.volume=236&rft.issue=23&rft.spage=11322&rft.epage=11329&rft.pages=11322-11329&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062221112798&rft_dat=%3Cproquest_cross%3E2730034986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730034986&rft_id=info:pmid/&rft_sage_id=10.1177_09544062221112798&rfr_iscdi=true |