Quantum cluster characters of Hall algebras revisited

Let Q be a finite acyclic valued quiver. We define a bialgebra structure and an integration map on the Hall algebra associated to the morphism category of projective representations of Q . As an application, we recover the surjective homomorphism defined in [ 12 ], which realizes the principal coeff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2023-02, Vol.29 (1), Article 4
Hauptverfasser: Fu, Changjian, Peng, Liangang, Zhang, Haicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Q be a finite acyclic valued quiver. We define a bialgebra structure and an integration map on the Hall algebra associated to the morphism category of projective representations of Q . As an application, we recover the surjective homomorphism defined in [ 12 ], which realizes the principal coefficient quantum cluster algebra A q ( Q ) as a sub-quotient of the Hall algebra of morphisms. Moreover, we also recover the quantum Caldero–Chapoton formula, as well as some multiplication formulas between quantum Caldero–Chapoton characters.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-022-00811-0