A New Intrinsic Metric on Metric Spaces

A new intrinsic metric called S D -metric is introduced for a general metric space ( X ,  d ), where D is a non-trivial bounded closed subset of X . The metric S D can be used to define a strongly hyperbolic metric on X . We consider the convergence of metric spaces { ( X , S D n ) } n = 1 ∞ for a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2022-11, Vol.45 (6), p.2941-2958
Hauptverfasser: Cui, Yumiao, Xiao, Yingqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2958
container_issue 6
container_start_page 2941
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 45
creator Cui, Yumiao
Xiao, Yingqing
description A new intrinsic metric called S D -metric is introduced for a general metric space ( X ,  d ), where D is a non-trivial bounded closed subset of X . The metric S D can be used to define a strongly hyperbolic metric on X . We consider the convergence of metric spaces { ( X , S D n ) } n = 1 ∞ for a sequence of non-trivial bounded closed subsets { D n } n = 1 ∞ . The distortion property of the new metric on the unit ball B n is also studied under the Möbius transformations of the unit ball.
doi_str_mv 10.1007/s40840-022-01310-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2729940941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729940941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-ff5c00578aef98e5414574743c9c71aa76063f71059a7f8225d6ff1b16e5ca753</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKcFD56iM5N_u8dS1BaqHtRziDGRFt1dky3itze6ijfn8t7hvTfwY-wY4QwBzHmWUEvgQMQBBQIXe2xCWAOXBHqfTQBJc21AHbJZzlsopzRpwgk7nVc34b1atUPatHnjq-tQnK-69tfd9c6HfMQOonvJYfajU_ZweXG_WPL17dVqMV9zTwADj1H5Mm5qF2JTByVRKiONFL7xBp0zGrSIBkE1zsSaSD3pGPERdVDeGSWm7GTc7VP3tgt5sNtul9ry0pKhppHQSCwpGlM-dTmnEG2fNq8ufVgE-8XEjkxsYWK_mVhRSmIs5RJun0P6m_6n9QnZXWB9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729940941</pqid></control><display><type>article</type><title>A New Intrinsic Metric on Metric Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Cui, Yumiao ; Xiao, Yingqing</creator><creatorcontrib>Cui, Yumiao ; Xiao, Yingqing</creatorcontrib><description>A new intrinsic metric called S D -metric is introduced for a general metric space ( X ,  d ), where D is a non-trivial bounded closed subset of X . The metric S D can be used to define a strongly hyperbolic metric on X . We consider the convergence of metric spaces { ( X , S D n ) } n = 1 ∞ for a sequence of non-trivial bounded closed subsets { D n } n = 1 ∞ . The distortion property of the new metric on the unit ball B n is also studied under the Möbius transformations of the unit ball.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-022-01310-3</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Applications of Mathematics ; Geometric transformation ; Mathematics ; Mathematics and Statistics ; Metric space</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2022-11, Vol.45 (6), p.2941-2958</ispartof><rights>The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2022</rights><rights>The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-ff5c00578aef98e5414574743c9c71aa76063f71059a7f8225d6ff1b16e5ca753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-022-01310-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-022-01310-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Cui, Yumiao</creatorcontrib><creatorcontrib>Xiao, Yingqing</creatorcontrib><title>A New Intrinsic Metric on Metric Spaces</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>A new intrinsic metric called S D -metric is introduced for a general metric space ( X ,  d ), where D is a non-trivial bounded closed subset of X . The metric S D can be used to define a strongly hyperbolic metric on X . We consider the convergence of metric spaces { ( X , S D n ) } n = 1 ∞ for a sequence of non-trivial bounded closed subsets { D n } n = 1 ∞ . The distortion property of the new metric on the unit ball B n is also studied under the Möbius transformations of the unit ball.</description><subject>Applications of Mathematics</subject><subject>Geometric transformation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gKcFD56iM5N_u8dS1BaqHtRziDGRFt1dky3itze6ijfn8t7hvTfwY-wY4QwBzHmWUEvgQMQBBQIXe2xCWAOXBHqfTQBJc21AHbJZzlsopzRpwgk7nVc34b1atUPatHnjq-tQnK-69tfd9c6HfMQOonvJYfajU_ZweXG_WPL17dVqMV9zTwADj1H5Mm5qF2JTByVRKiONFL7xBp0zGrSIBkE1zsSaSD3pGPERdVDeGSWm7GTc7VP3tgt5sNtul9ry0pKhppHQSCwpGlM-dTmnEG2fNq8ufVgE-8XEjkxsYWK_mVhRSmIs5RJun0P6m_6n9QnZXWB9</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Cui, Yumiao</creator><creator>Xiao, Yingqing</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>A New Intrinsic Metric on Metric Spaces</title><author>Cui, Yumiao ; Xiao, Yingqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-ff5c00578aef98e5414574743c9c71aa76063f71059a7f8225d6ff1b16e5ca753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Geometric transformation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yumiao</creatorcontrib><creatorcontrib>Xiao, Yingqing</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yumiao</au><au>Xiao, Yingqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Intrinsic Metric on Metric Spaces</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>45</volume><issue>6</issue><spage>2941</spage><epage>2958</epage><pages>2941-2958</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>A new intrinsic metric called S D -metric is introduced for a general metric space ( X ,  d ), where D is a non-trivial bounded closed subset of X . The metric S D can be used to define a strongly hyperbolic metric on X . We consider the convergence of metric spaces { ( X , S D n ) } n = 1 ∞ for a sequence of non-trivial bounded closed subsets { D n } n = 1 ∞ . The distortion property of the new metric on the unit ball B n is also studied under the Möbius transformations of the unit ball.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s40840-022-01310-3</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2022-11, Vol.45 (6), p.2941-2958
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_2729940941
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Geometric transformation
Mathematics
Mathematics and Statistics
Metric space
title A New Intrinsic Metric on Metric Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Intrinsic%20Metric%20on%20Metric%20Spaces&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Cui,%20Yumiao&rft.date=2022-11-01&rft.volume=45&rft.issue=6&rft.spage=2941&rft.epage=2958&rft.pages=2941-2958&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-022-01310-3&rft_dat=%3Cproquest_cross%3E2729940941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729940941&rft_id=info:pmid/&rfr_iscdi=true