A Primal-Dual Approach to Solving Variational Inequalities with General Constraints
Yang et al. (2023) recently showed how to use first-order gradient methods to solve general variational inequalities (VIs) under a limiting assumption that analytic solutions of specific subproblems are available. In this paper, we circumvent this assumption via a warm-starting technique where we so...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chavdarova, Tatjana Yang, Tong Pagliardini, Matteo Jordan, Michael I |
description | Yang et al. (2023) recently showed how to use first-order gradient methods to solve general variational inequalities (VIs) under a limiting assumption that analytic solutions of specific subproblems are available. In this paper, we circumvent this assumption via a warm-starting technique where we solve subproblems approximately and initialize variables with the approximate solution found at the previous iteration. We prove the convergence of this method and show that the gap function of the last iterate of the method decreases at a rate of \(O(\frac{1}{\sqrt{K}})\) when the operator is \(L\)-Lipschitz and monotone. In numerical experiments, we show that this technique can converge much faster than its exact counterpart. Furthermore, for the cases when the inequality constraints are simple, we introduce an alternative variant of ACVI and establish its convergence under the same conditions. Finally, we relax the smoothness assumptions in Yang et al., yielding, to our knowledge, the first convergence result for VIs with general constraints that does not rely on the assumption that the operator is \(L\)-Lipschitz. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2729741331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729741331</sourcerecordid><originalsourceid>FETCH-proquest_journals_27297413313</originalsourceid><addsrcrecordid>eNqNjr0KwjAURoMgWLTvEHAutElrdSz1dxMU13KRaG-JSZub6uubwQdw-oZzOHwTFgkps2SdCzFjMVGXpqlYlaIoZMQuFT87fIFOtiNoXvW9s3Bvubf8YvUbzZPfwCF4tCbwk1FD8NCjIv5B3_KDMsoFUltD3gEaTws2fYAmFf92zpb73bU-JqE9jIp809nRhRw1ohSbMs_CP_mf9QUQVEAL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729741331</pqid></control><display><type>article</type><title>A Primal-Dual Approach to Solving Variational Inequalities with General Constraints</title><source>Free E- Journals</source><creator>Chavdarova, Tatjana ; Yang, Tong ; Pagliardini, Matteo ; Jordan, Michael I</creator><creatorcontrib>Chavdarova, Tatjana ; Yang, Tong ; Pagliardini, Matteo ; Jordan, Michael I</creatorcontrib><description>Yang et al. (2023) recently showed how to use first-order gradient methods to solve general variational inequalities (VIs) under a limiting assumption that analytic solutions of specific subproblems are available. In this paper, we circumvent this assumption via a warm-starting technique where we solve subproblems approximately and initialize variables with the approximate solution found at the previous iteration. We prove the convergence of this method and show that the gap function of the last iterate of the method decreases at a rate of \(O(\frac{1}{\sqrt{K}})\) when the operator is \(L\)-Lipschitz and monotone. In numerical experiments, we show that this technique can converge much faster than its exact counterpart. Furthermore, for the cases when the inequality constraints are simple, we introduce an alternative variant of ACVI and establish its convergence under the same conditions. Finally, we relax the smoothness assumptions in Yang et al., yielding, to our knowledge, the first convergence result for VIs with general constraints that does not rely on the assumption that the operator is \(L\)-Lipschitz.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Constraints ; Convergence ; Empirical analysis ; Inequalities ; Mathematical analysis</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Chavdarova, Tatjana</creatorcontrib><creatorcontrib>Yang, Tong</creatorcontrib><creatorcontrib>Pagliardini, Matteo</creatorcontrib><creatorcontrib>Jordan, Michael I</creatorcontrib><title>A Primal-Dual Approach to Solving Variational Inequalities with General Constraints</title><title>arXiv.org</title><description>Yang et al. (2023) recently showed how to use first-order gradient methods to solve general variational inequalities (VIs) under a limiting assumption that analytic solutions of specific subproblems are available. In this paper, we circumvent this assumption via a warm-starting technique where we solve subproblems approximately and initialize variables with the approximate solution found at the previous iteration. We prove the convergence of this method and show that the gap function of the last iterate of the method decreases at a rate of \(O(\frac{1}{\sqrt{K}})\) when the operator is \(L\)-Lipschitz and monotone. In numerical experiments, we show that this technique can converge much faster than its exact counterpart. Furthermore, for the cases when the inequality constraints are simple, we introduce an alternative variant of ACVI and establish its convergence under the same conditions. Finally, we relax the smoothness assumptions in Yang et al., yielding, to our knowledge, the first convergence result for VIs with general constraints that does not rely on the assumption that the operator is \(L\)-Lipschitz.</description><subject>Constraints</subject><subject>Convergence</subject><subject>Empirical analysis</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjr0KwjAURoMgWLTvEHAutElrdSz1dxMU13KRaG-JSZub6uubwQdw-oZzOHwTFgkps2SdCzFjMVGXpqlYlaIoZMQuFT87fIFOtiNoXvW9s3Bvubf8YvUbzZPfwCF4tCbwk1FD8NCjIv5B3_KDMsoFUltD3gEaTws2fYAmFf92zpb73bU-JqE9jIp809nRhRw1ohSbMs_CP_mf9QUQVEAL</recordid><startdate>20240803</startdate><enddate>20240803</enddate><creator>Chavdarova, Tatjana</creator><creator>Yang, Tong</creator><creator>Pagliardini, Matteo</creator><creator>Jordan, Michael I</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240803</creationdate><title>A Primal-Dual Approach to Solving Variational Inequalities with General Constraints</title><author>Chavdarova, Tatjana ; Yang, Tong ; Pagliardini, Matteo ; Jordan, Michael I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27297413313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constraints</topic><topic>Convergence</topic><topic>Empirical analysis</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Chavdarova, Tatjana</creatorcontrib><creatorcontrib>Yang, Tong</creatorcontrib><creatorcontrib>Pagliardini, Matteo</creatorcontrib><creatorcontrib>Jordan, Michael I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavdarova, Tatjana</au><au>Yang, Tong</au><au>Pagliardini, Matteo</au><au>Jordan, Michael I</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Primal-Dual Approach to Solving Variational Inequalities with General Constraints</atitle><jtitle>arXiv.org</jtitle><date>2024-08-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Yang et al. (2023) recently showed how to use first-order gradient methods to solve general variational inequalities (VIs) under a limiting assumption that analytic solutions of specific subproblems are available. In this paper, we circumvent this assumption via a warm-starting technique where we solve subproblems approximately and initialize variables with the approximate solution found at the previous iteration. We prove the convergence of this method and show that the gap function of the last iterate of the method decreases at a rate of \(O(\frac{1}{\sqrt{K}})\) when the operator is \(L\)-Lipschitz and monotone. In numerical experiments, we show that this technique can converge much faster than its exact counterpart. Furthermore, for the cases when the inequality constraints are simple, we introduce an alternative variant of ACVI and establish its convergence under the same conditions. Finally, we relax the smoothness assumptions in Yang et al., yielding, to our knowledge, the first convergence result for VIs with general constraints that does not rely on the assumption that the operator is \(L\)-Lipschitz.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2729741331 |
source | Free E- Journals |
subjects | Constraints Convergence Empirical analysis Inequalities Mathematical analysis |
title | A Primal-Dual Approach to Solving Variational Inequalities with General Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Primal-Dual%20Approach%20to%20Solving%20Variational%20Inequalities%20with%20General%20Constraints&rft.jtitle=arXiv.org&rft.au=Chavdarova,%20Tatjana&rft.date=2024-08-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2729741331%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729741331&rft_id=info:pmid/&rfr_iscdi=true |