Transfer Learning for Medicinal Plant Leaves Recognition: A Comparison with and without a Fine-Tuning Strategy
Plant leaves are another common source of information for determining plant species. According to the dataset that has been collected, we propose transfer learning models VGG16, VGG19, and MobileNetV2 to examine the distinguishing features to identify medicinal plant leaves. We also improved algorit...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2022, Vol.13 (9) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 13 |
creator | Ayumi, Vina Ermatita, Ermatita Abdiansah, Abdiansah Noprisson, Handrie Jumaryadi, Yuwan Purba, Mariana Utami, Marissa Putra, Erwin Dwika |
description | Plant leaves are another common source of information for determining plant species. According to the dataset that has been collected, we propose transfer learning models VGG16, VGG19, and MobileNetV2 to examine the distinguishing features to identify medicinal plant leaves. We also improved algorithm using fine-tuning strategy and analyzed a comparison with and without a fine-tuning strategy to transfer learning models performance. Several protocols or steps were used to conduct this study, including data collection, data preparation, feature extraction, classification, and evaluation. The distribution of training and validation data is 80% for training data and 20% for validation data, with 1500 images of thirty species. The testing data consisted of a total of 43 images of 30 species. Each species class consists of 1-3 images. With a validation accuracy of 96.02 percent, MobileNetV2 with fine-tuning had the best validation accuracy. MobileNetV2 with fine-tuning also had the best testing accuracy of 81.82%. |
doi_str_mv | 10.14569/IJACSA.2022.0130916 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2729734257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729734257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1896-40acbf8df01f6adcc243ae2305f8317e2eeac9bc22bfacec755ab5badd9410f43</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWGr_gYuA66l5TObhbihWKxXFVnAX7mSSmtImNZlR-u9tpz2be-AeDpwPoVtKxjQVWXk_e6kmi2rMCGNjQjkpaXaBBoyKLBEiJ5e9LxJK8q9rNIpxTQ7iJcsKPkBuGcBFowOeawjOuhU2PuBX3VhlHWzw-wZce3z-6og_tPIrZ1vr3QOu8MRvdxBs9A7_2fYbg2t647sWA55ap5Nl13cu2gCtXu1v0JWBTdSj8x2iz-njcvKczN-eZpNqnihalFmSElC1KRpDqMmgUYqlHDTjRJiC01wzrUGVtWKsNqC0yoWAWtTQNGVKiUn5EN2denfB_3Q6tnLtu3DYEyXLWZnzlIn8kEpPKRV8jEEbuQt2C2EvKZE9XHmCK49w5Rku_wfbwW7u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729734257</pqid></control><display><type>article</type><title>Transfer Learning for Medicinal Plant Leaves Recognition: A Comparison with and without a Fine-Tuning Strategy</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ayumi, Vina ; Ermatita, Ermatita ; Abdiansah, Abdiansah ; Noprisson, Handrie ; Jumaryadi, Yuwan ; Purba, Mariana ; Utami, Marissa ; Putra, Erwin Dwika</creator><creatorcontrib>Ayumi, Vina ; Ermatita, Ermatita ; Abdiansah, Abdiansah ; Noprisson, Handrie ; Jumaryadi, Yuwan ; Purba, Mariana ; Utami, Marissa ; Putra, Erwin Dwika</creatorcontrib><description>Plant leaves are another common source of information for determining plant species. According to the dataset that has been collected, we propose transfer learning models VGG16, VGG19, and MobileNetV2 to examine the distinguishing features to identify medicinal plant leaves. We also improved algorithm using fine-tuning strategy and analyzed a comparison with and without a fine-tuning strategy to transfer learning models performance. Several protocols or steps were used to conduct this study, including data collection, data preparation, feature extraction, classification, and evaluation. The distribution of training and validation data is 80% for training data and 20% for validation data, with 1500 images of thirty species. The testing data consisted of a total of 43 images of 30 species. Each species class consists of 1-3 images. With a validation accuracy of 96.02 percent, MobileNetV2 with fine-tuning had the best validation accuracy. MobileNetV2 with fine-tuning also had the best testing accuracy of 81.82%.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2022.0130916</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Algorithms ; Data collection ; Deep learning ; Feature extraction ; Herbal medicine ; Learning ; Training</subject><ispartof>International journal of advanced computer science & applications, 2022, Vol.13 (9)</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Ayumi, Vina</creatorcontrib><creatorcontrib>Ermatita, Ermatita</creatorcontrib><creatorcontrib>Abdiansah, Abdiansah</creatorcontrib><creatorcontrib>Noprisson, Handrie</creatorcontrib><creatorcontrib>Jumaryadi, Yuwan</creatorcontrib><creatorcontrib>Purba, Mariana</creatorcontrib><creatorcontrib>Utami, Marissa</creatorcontrib><creatorcontrib>Putra, Erwin Dwika</creatorcontrib><title>Transfer Learning for Medicinal Plant Leaves Recognition: A Comparison with and without a Fine-Tuning Strategy</title><title>International journal of advanced computer science & applications</title><description>Plant leaves are another common source of information for determining plant species. According to the dataset that has been collected, we propose transfer learning models VGG16, VGG19, and MobileNetV2 to examine the distinguishing features to identify medicinal plant leaves. We also improved algorithm using fine-tuning strategy and analyzed a comparison with and without a fine-tuning strategy to transfer learning models performance. Several protocols or steps were used to conduct this study, including data collection, data preparation, feature extraction, classification, and evaluation. The distribution of training and validation data is 80% for training data and 20% for validation data, with 1500 images of thirty species. The testing data consisted of a total of 43 images of 30 species. Each species class consists of 1-3 images. With a validation accuracy of 96.02 percent, MobileNetV2 with fine-tuning had the best validation accuracy. MobileNetV2 with fine-tuning also had the best testing accuracy of 81.82%.</description><subject>Algorithms</subject><subject>Data collection</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Herbal medicine</subject><subject>Learning</subject><subject>Training</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEtLAzEUhYMoWGr_gYuA66l5TObhbihWKxXFVnAX7mSSmtImNZlR-u9tpz2be-AeDpwPoVtKxjQVWXk_e6kmi2rMCGNjQjkpaXaBBoyKLBEiJ5e9LxJK8q9rNIpxTQ7iJcsKPkBuGcBFowOeawjOuhU2PuBX3VhlHWzw-wZce3z-6og_tPIrZ1vr3QOu8MRvdxBs9A7_2fYbg2t647sWA55ap5Nl13cu2gCtXu1v0JWBTdSj8x2iz-njcvKczN-eZpNqnihalFmSElC1KRpDqMmgUYqlHDTjRJiC01wzrUGVtWKsNqC0yoWAWtTQNGVKiUn5EN2denfB_3Q6tnLtu3DYEyXLWZnzlIn8kEpPKRV8jEEbuQt2C2EvKZE9XHmCK49w5Rku_wfbwW7u</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ayumi, Vina</creator><creator>Ermatita, Ermatita</creator><creator>Abdiansah, Abdiansah</creator><creator>Noprisson, Handrie</creator><creator>Jumaryadi, Yuwan</creator><creator>Purba, Mariana</creator><creator>Utami, Marissa</creator><creator>Putra, Erwin Dwika</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2022</creationdate><title>Transfer Learning for Medicinal Plant Leaves Recognition: A Comparison with and without a Fine-Tuning Strategy</title><author>Ayumi, Vina ; Ermatita, Ermatita ; Abdiansah, Abdiansah ; Noprisson, Handrie ; Jumaryadi, Yuwan ; Purba, Mariana ; Utami, Marissa ; Putra, Erwin Dwika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1896-40acbf8df01f6adcc243ae2305f8317e2eeac9bc22bfacec755ab5badd9410f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Data collection</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Herbal medicine</topic><topic>Learning</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ayumi, Vina</creatorcontrib><creatorcontrib>Ermatita, Ermatita</creatorcontrib><creatorcontrib>Abdiansah, Abdiansah</creatorcontrib><creatorcontrib>Noprisson, Handrie</creatorcontrib><creatorcontrib>Jumaryadi, Yuwan</creatorcontrib><creatorcontrib>Purba, Mariana</creatorcontrib><creatorcontrib>Utami, Marissa</creatorcontrib><creatorcontrib>Putra, Erwin Dwika</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayumi, Vina</au><au>Ermatita, Ermatita</au><au>Abdiansah, Abdiansah</au><au>Noprisson, Handrie</au><au>Jumaryadi, Yuwan</au><au>Purba, Mariana</au><au>Utami, Marissa</au><au>Putra, Erwin Dwika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer Learning for Medicinal Plant Leaves Recognition: A Comparison with and without a Fine-Tuning Strategy</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2022</date><risdate>2022</risdate><volume>13</volume><issue>9</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Plant leaves are another common source of information for determining plant species. According to the dataset that has been collected, we propose transfer learning models VGG16, VGG19, and MobileNetV2 to examine the distinguishing features to identify medicinal plant leaves. We also improved algorithm using fine-tuning strategy and analyzed a comparison with and without a fine-tuning strategy to transfer learning models performance. Several protocols or steps were used to conduct this study, including data collection, data preparation, feature extraction, classification, and evaluation. The distribution of training and validation data is 80% for training data and 20% for validation data, with 1500 images of thirty species. The testing data consisted of a total of 43 images of 30 species. Each species class consists of 1-3 images. With a validation accuracy of 96.02 percent, MobileNetV2 with fine-tuning had the best validation accuracy. MobileNetV2 with fine-tuning also had the best testing accuracy of 81.82%.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2022.0130916</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2022, Vol.13 (9) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2729734257 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Data collection Deep learning Feature extraction Herbal medicine Learning Training |
title | Transfer Learning for Medicinal Plant Leaves Recognition: A Comparison with and without a Fine-Tuning Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20Learning%20for%20Medicinal%20Plant%20Leaves%20Recognition:%20A%20Comparison%20with%20and%20without%20a%20Fine-Tuning%20Strategy&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Ayumi,%20Vina&rft.date=2022&rft.volume=13&rft.issue=9&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2022.0130916&rft_dat=%3Cproquest_cross%3E2729734257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729734257&rft_id=info:pmid/&rfr_iscdi=true |