A Quantitative Evaluation of Energy Transfer of a Concrete Vibrator

Using vibration to consolidate concrete is a standard task when placing normal concrete, and dates back to the early 1900s. Since then, concrete vibrators have been optimized to provide efficient consolidation, which includes an increase in their vibration frequency up to 200 Hz. On the other hand,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACI materials journal 2022-09, Vol.119 (5), p.261-268
Hauptverfasser: Kim, Jae Hong, Shin, Tae Yong, Park, Cho-Bum, Park, Chan Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 5
container_start_page 261
container_title ACI materials journal
container_volume 119
creator Kim, Jae Hong
Shin, Tae Yong
Park, Cho-Bum
Park, Chan Kyu
description Using vibration to consolidate concrete is a standard task when placing normal concrete, and dates back to the early 1900s. Since then, concrete vibrators have been optimized to provide efficient consolidation, which includes an increase in their vibration frequency up to 200 Hz. On the other hand, compared to the concrete of the early 1900s, modern concrete has also been improved by reducing the proportion of water content. Both have been changed, but the vibration energy transfer has not been quantitatively evaluated lately for the updated vibrators and modern concrete. Herein, the attenuation of concrete, assuming a cylindrical wavefront and exponential decay for P-wave propagation, is measured and quantified. As a result, it can be concluded that the attenuation coefficient of modern concrete is distributed from 1 to 3 [m.sup.-1]. The notional power density, the maximum vibration energy imposed by a conventional vibrator, is 100 to 300 W/m (3), excluding the instability of near-field liquefaction. Keywords: attenuation; consolidation; rheology; vibrator.
doi_str_mv 10.14359/51735979
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2729566013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726043174</galeid><sourcerecordid>A726043174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-c7d277e6929f4de6bb343dd7ffb215894b768e816af23d4e326e053032c735603</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJg_Tj4DxY8ediaj02yeyxL_YCCCFW8hezuS0lpk5pkC_33Rqsg7zDDMPMebxC6IXhKKsabe05kBtmcoAmu66ZklH-c_uPn6CLGNcZUcM4nqJ0Vr6N2ySad7B6K-V5vxky9K7wp5g7C6lAsg3bRQPiWdNF61wdIULzbLujkwxU6M3oT4foXL9Hbw3zZPpWLl8fndrYoe8pFKns5UClBNLQx1QCi61jFhkEa01HC66bqpKihJkIbyoYKGBWAOcOM9vklgdkluj3u3QX_OUJMau3H4PJJRSVtuBCYsOyaHl0rvQFlnfEp6D7PAFvbewfGZn0mqcAVI7LKgbtjoA8-xgBG7YLd6nBQBKufUtVfqewLy-Bm-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729566013</pqid></control><display><type>article</type><title>A Quantitative Evaluation of Energy Transfer of a Concrete Vibrator</title><source>American Concrete Institute Online Journal Archives</source><creator>Kim, Jae Hong ; Shin, Tae Yong ; Park, Cho-Bum ; Park, Chan Kyu</creator><creatorcontrib>Kim, Jae Hong ; Shin, Tae Yong ; Park, Cho-Bum ; Park, Chan Kyu</creatorcontrib><description>Using vibration to consolidate concrete is a standard task when placing normal concrete, and dates back to the early 1900s. Since then, concrete vibrators have been optimized to provide efficient consolidation, which includes an increase in their vibration frequency up to 200 Hz. On the other hand, compared to the concrete of the early 1900s, modern concrete has also been improved by reducing the proportion of water content. Both have been changed, but the vibration energy transfer has not been quantitatively evaluated lately for the updated vibrators and modern concrete. Herein, the attenuation of concrete, assuming a cylindrical wavefront and exponential decay for P-wave propagation, is measured and quantified. As a result, it can be concluded that the attenuation coefficient of modern concrete is distributed from 1 to 3 [m.sup.-1]. The notional power density, the maximum vibration energy imposed by a conventional vibrator, is 100 to 300 W/m (3), excluding the instability of near-field liquefaction. Keywords: attenuation; consolidation; rheology; vibrator.</description><identifier>ISSN: 0889-325X</identifier><identifier>EISSN: 0889-325X</identifier><identifier>EISSN: 1944-737X</identifier><identifier>DOI: 10.14359/51735979</identifier><language>eng</language><publisher>Farmington Hills: American Concrete Institute</publisher><subject>Accelerometers ; Analysis ; Attenuation coefficients ; Cement ; Concrete ; Energy ; Energy transfer ; Energy transformation ; Investigations ; Liquefaction ; Moisture content ; Nuclear power plants ; P waves ; Propagation ; Properties ; Vibration ; Vibrators ; Wave fronts ; Wave propagation</subject><ispartof>ACI materials journal, 2022-09, Vol.119 (5), p.261-268</ispartof><rights>COPYRIGHT 2022 American Concrete Institute</rights><rights>Copyright American Concrete Institute Sep 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-c7d277e6929f4de6bb343dd7ffb215894b768e816af23d4e326e053032c735603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Jae Hong</creatorcontrib><creatorcontrib>Shin, Tae Yong</creatorcontrib><creatorcontrib>Park, Cho-Bum</creatorcontrib><creatorcontrib>Park, Chan Kyu</creatorcontrib><title>A Quantitative Evaluation of Energy Transfer of a Concrete Vibrator</title><title>ACI materials journal</title><description>Using vibration to consolidate concrete is a standard task when placing normal concrete, and dates back to the early 1900s. Since then, concrete vibrators have been optimized to provide efficient consolidation, which includes an increase in their vibration frequency up to 200 Hz. On the other hand, compared to the concrete of the early 1900s, modern concrete has also been improved by reducing the proportion of water content. Both have been changed, but the vibration energy transfer has not been quantitatively evaluated lately for the updated vibrators and modern concrete. Herein, the attenuation of concrete, assuming a cylindrical wavefront and exponential decay for P-wave propagation, is measured and quantified. As a result, it can be concluded that the attenuation coefficient of modern concrete is distributed from 1 to 3 [m.sup.-1]. The notional power density, the maximum vibration energy imposed by a conventional vibrator, is 100 to 300 W/m (3), excluding the instability of near-field liquefaction. Keywords: attenuation; consolidation; rheology; vibrator.</description><subject>Accelerometers</subject><subject>Analysis</subject><subject>Attenuation coefficients</subject><subject>Cement</subject><subject>Concrete</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Energy transformation</subject><subject>Investigations</subject><subject>Liquefaction</subject><subject>Moisture content</subject><subject>Nuclear power plants</subject><subject>P waves</subject><subject>Propagation</subject><subject>Properties</subject><subject>Vibration</subject><subject>Vibrators</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><issn>0889-325X</issn><issn>0889-325X</issn><issn>1944-737X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNUE1LAzEUDKJg_Tj4DxY8ediaj02yeyxL_YCCCFW8hezuS0lpk5pkC_33Rqsg7zDDMPMebxC6IXhKKsabe05kBtmcoAmu66ZklH-c_uPn6CLGNcZUcM4nqJ0Vr6N2ySad7B6K-V5vxky9K7wp5g7C6lAsg3bRQPiWdNF61wdIULzbLujkwxU6M3oT4foXL9Hbw3zZPpWLl8fndrYoe8pFKns5UClBNLQx1QCi61jFhkEa01HC66bqpKihJkIbyoYKGBWAOcOM9vklgdkluj3u3QX_OUJMau3H4PJJRSVtuBCYsOyaHl0rvQFlnfEp6D7PAFvbewfGZn0mqcAVI7LKgbtjoA8-xgBG7YLd6nBQBKufUtVfqewLy-Bm-A</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Kim, Jae Hong</creator><creator>Shin, Tae Yong</creator><creator>Park, Cho-Bum</creator><creator>Park, Chan Kyu</creator><general>American Concrete Institute</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QQ</scope><scope>7RQ</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20220901</creationdate><title>A Quantitative Evaluation of Energy Transfer of a Concrete Vibrator</title><author>Kim, Jae Hong ; Shin, Tae Yong ; Park, Cho-Bum ; Park, Chan Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-c7d277e6929f4de6bb343dd7ffb215894b768e816af23d4e326e053032c735603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Analysis</topic><topic>Attenuation coefficients</topic><topic>Cement</topic><topic>Concrete</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Energy transformation</topic><topic>Investigations</topic><topic>Liquefaction</topic><topic>Moisture content</topic><topic>Nuclear power plants</topic><topic>P waves</topic><topic>Propagation</topic><topic>Properties</topic><topic>Vibration</topic><topic>Vibrators</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jae Hong</creatorcontrib><creatorcontrib>Shin, Tae Yong</creatorcontrib><creatorcontrib>Park, Cho-Bum</creatorcontrib><creatorcontrib>Park, Chan Kyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Ceramic Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ACI materials journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jae Hong</au><au>Shin, Tae Yong</au><au>Park, Cho-Bum</au><au>Park, Chan Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quantitative Evaluation of Energy Transfer of a Concrete Vibrator</atitle><jtitle>ACI materials journal</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>119</volume><issue>5</issue><spage>261</spage><epage>268</epage><pages>261-268</pages><issn>0889-325X</issn><eissn>0889-325X</eissn><eissn>1944-737X</eissn><abstract>Using vibration to consolidate concrete is a standard task when placing normal concrete, and dates back to the early 1900s. Since then, concrete vibrators have been optimized to provide efficient consolidation, which includes an increase in their vibration frequency up to 200 Hz. On the other hand, compared to the concrete of the early 1900s, modern concrete has also been improved by reducing the proportion of water content. Both have been changed, but the vibration energy transfer has not been quantitatively evaluated lately for the updated vibrators and modern concrete. Herein, the attenuation of concrete, assuming a cylindrical wavefront and exponential decay for P-wave propagation, is measured and quantified. As a result, it can be concluded that the attenuation coefficient of modern concrete is distributed from 1 to 3 [m.sup.-1]. The notional power density, the maximum vibration energy imposed by a conventional vibrator, is 100 to 300 W/m (3), excluding the instability of near-field liquefaction. Keywords: attenuation; consolidation; rheology; vibrator.</abstract><cop>Farmington Hills</cop><pub>American Concrete Institute</pub><doi>10.14359/51735979</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0889-325X
ispartof ACI materials journal, 2022-09, Vol.119 (5), p.261-268
issn 0889-325X
0889-325X
1944-737X
language eng
recordid cdi_proquest_journals_2729566013
source American Concrete Institute Online Journal Archives
subjects Accelerometers
Analysis
Attenuation coefficients
Cement
Concrete
Energy
Energy transfer
Energy transformation
Investigations
Liquefaction
Moisture content
Nuclear power plants
P waves
Propagation
Properties
Vibration
Vibrators
Wave fronts
Wave propagation
title A Quantitative Evaluation of Energy Transfer of a Concrete Vibrator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quantitative%20Evaluation%20of%20Energy%20Transfer%20of%20a%20Concrete%20Vibrator&rft.jtitle=ACI%20materials%20journal&rft.au=Kim,%20Jae%20Hong&rft.date=2022-09-01&rft.volume=119&rft.issue=5&rft.spage=261&rft.epage=268&rft.pages=261-268&rft.issn=0889-325X&rft.eissn=0889-325X&rft_id=info:doi/10.14359/51735979&rft_dat=%3Cgale_proqu%3EA726043174%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729566013&rft_id=info:pmid/&rft_galeid=A726043174&rfr_iscdi=true