Modelling, prediction and classification of student academic performance using artificial neural networks

The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN applied sciences 2019-09, Vol.1 (9), p.982, Article 982
Hauptverfasser: Lau, E. T., Sun, L., Yang, Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 982
container_title SN applied sciences
container_volume 1
creator Lau, E. T.
Sun, L.
Yang, Q.
description The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations are used to identify the factors that likely affect the students’ performance. The neural network is modelled with 11 input variables, two layers of hidden neurons, and one output layer. Levenberg–Marquardt algorithm is employed as the backpropagation training rule. The performance of neural network model is evaluated through the error performance, regression, error histogram, confusion matrix and area under the receiver operating characteristics curve. Overall, the neural network model has achieved a good prediction accuracy of 84.8%, along with limitations.
doi_str_mv 10.1007/s42452-019-0884-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2729543133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729543133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-14374c51ef1018d332d48009a5479832ad5f60f744157fb87e8a2d6388f40a2c3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWGofwF3AraO5NpmlFG9QcaPrEHMpqdNkTDKIb--0I7pydQ6H__sPfACcY3SFERLXhRHGSYNw2yApWSOOwIxwQhvaCnz8uy_pKViUskUIEdFSJukMhKdkXdeFuLmEfXY2mBpShDpaaDpdSvDB6MMpeVjqYF2sUBtt3S4Y2LvsU97paBwcylgCda57JOgORjfkw6ifKb-XM3DidVfc4mfOwevd7cvqoVk_3z-ubtaNobytDWZUMMOx8xhhaSkllkmEWs2ZaCUl2nK_RF4whrnwb1I4qYldUik9Q5oYOgcXU2-f08fgSlXbNOQ4vlREkJYziikdU3hKmZxKyc6rPoedzl8KI7WXqiapapSq9lKVGBkyMWXMxo3Lf83_Q9_W3HpJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729543133</pqid></control><display><type>article</type><title>Modelling, prediction and classification of student academic performance using artificial neural networks</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lau, E. T. ; Sun, L. ; Yang, Q.</creator><creatorcontrib>Lau, E. T. ; Sun, L. ; Yang, Q.</creatorcontrib><description>The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations are used to identify the factors that likely affect the students’ performance. The neural network is modelled with 11 input variables, two layers of hidden neurons, and one output layer. Levenberg–Marquardt algorithm is employed as the backpropagation training rule. The performance of neural network model is evaluated through the error performance, regression, error histogram, confusion matrix and area under the receiver operating characteristics curve. Overall, the neural network model has achieved a good prediction accuracy of 84.8%, along with limitations.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-019-0884-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Academic achievement ; Accuracy ; Algorithms ; Applied and Technical Physics ; Artificial intelligence ; Artificial neural networks ; Back propagation ; Back propagation networks ; Bibliometrics ; Chemistry/Food Science ; Colleges &amp; universities ; Data science ; Discriminant analysis ; Earth Sciences ; Educational research ; Engineering ; Engineering: Frontiers in Machine Learning: Algorithms and Applications (FMLAA) ; Entrance examinations ; Environment ; Histograms ; Hypothesis testing ; Learning ; Materials Science ; Modelling ; Neural networks ; Neurons ; Performance evaluation ; Predictions ; Quality of education ; Research Article ; Statistical analysis ; Statistical methods ; Statistics ; Students ; Success ; Teaching ; University students</subject><ispartof>SN applied sciences, 2019-09, Vol.1 (9), p.982, Article 982</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-14374c51ef1018d332d48009a5479832ad5f60f744157fb87e8a2d6388f40a2c3</citedby><cites>FETCH-LOGICAL-c359t-14374c51ef1018d332d48009a5479832ad5f60f744157fb87e8a2d6388f40a2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lau, E. T.</creatorcontrib><creatorcontrib>Sun, L.</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><title>Modelling, prediction and classification of student academic performance using artificial neural networks</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations are used to identify the factors that likely affect the students’ performance. The neural network is modelled with 11 input variables, two layers of hidden neurons, and one output layer. Levenberg–Marquardt algorithm is employed as the backpropagation training rule. The performance of neural network model is evaluated through the error performance, regression, error histogram, confusion matrix and area under the receiver operating characteristics curve. Overall, the neural network model has achieved a good prediction accuracy of 84.8%, along with limitations.</description><subject>Academic achievement</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Bibliometrics</subject><subject>Chemistry/Food Science</subject><subject>Colleges &amp; universities</subject><subject>Data science</subject><subject>Discriminant analysis</subject><subject>Earth Sciences</subject><subject>Educational research</subject><subject>Engineering</subject><subject>Engineering: Frontiers in Machine Learning: Algorithms and Applications (FMLAA)</subject><subject>Entrance examinations</subject><subject>Environment</subject><subject>Histograms</subject><subject>Hypothesis testing</subject><subject>Learning</subject><subject>Materials Science</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Performance evaluation</subject><subject>Predictions</subject><subject>Quality of education</subject><subject>Research Article</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Students</subject><subject>Success</subject><subject>Teaching</subject><subject>University students</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kMtKAzEUhoMoWGofwF3AraO5NpmlFG9QcaPrEHMpqdNkTDKIb--0I7pydQ6H__sPfACcY3SFERLXhRHGSYNw2yApWSOOwIxwQhvaCnz8uy_pKViUskUIEdFSJukMhKdkXdeFuLmEfXY2mBpShDpaaDpdSvDB6MMpeVjqYF2sUBtt3S4Y2LvsU97paBwcylgCda57JOgORjfkw6ifKb-XM3DidVfc4mfOwevd7cvqoVk_3z-ubtaNobytDWZUMMOx8xhhaSkllkmEWs2ZaCUl2nK_RF4whrnwb1I4qYldUik9Q5oYOgcXU2-f08fgSlXbNOQ4vlREkJYziikdU3hKmZxKyc6rPoedzl8KI7WXqiapapSq9lKVGBkyMWXMxo3Lf83_Q9_W3HpJ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Lau, E. T.</creator><creator>Sun, L.</creator><creator>Yang, Q.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>Modelling, prediction and classification of student academic performance using artificial neural networks</title><author>Lau, E. T. ; Sun, L. ; Yang, Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-14374c51ef1018d332d48009a5479832ad5f60f744157fb87e8a2d6388f40a2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Academic achievement</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Bibliometrics</topic><topic>Chemistry/Food Science</topic><topic>Colleges &amp; universities</topic><topic>Data science</topic><topic>Discriminant analysis</topic><topic>Earth Sciences</topic><topic>Educational research</topic><topic>Engineering</topic><topic>Engineering: Frontiers in Machine Learning: Algorithms and Applications (FMLAA)</topic><topic>Entrance examinations</topic><topic>Environment</topic><topic>Histograms</topic><topic>Hypothesis testing</topic><topic>Learning</topic><topic>Materials Science</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Performance evaluation</topic><topic>Predictions</topic><topic>Quality of education</topic><topic>Research Article</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Students</topic><topic>Success</topic><topic>Teaching</topic><topic>University students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, E. T.</creatorcontrib><creatorcontrib>Sun, L.</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, E. T.</au><au>Sun, L.</au><au>Yang, Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling, prediction and classification of student academic performance using artificial neural networks</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>1</volume><issue>9</issue><spage>982</spage><pages>982-</pages><artnum>982</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations are used to identify the factors that likely affect the students’ performance. The neural network is modelled with 11 input variables, two layers of hidden neurons, and one output layer. Levenberg–Marquardt algorithm is employed as the backpropagation training rule. The performance of neural network model is evaluated through the error performance, regression, error histogram, confusion matrix and area under the receiver operating characteristics curve. Overall, the neural network model has achieved a good prediction accuracy of 84.8%, along with limitations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-019-0884-7</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2523-3963
ispartof SN applied sciences, 2019-09, Vol.1 (9), p.982, Article 982
issn 2523-3963
2523-3971
language eng
recordid cdi_proquest_journals_2729543133
source EZB-FREE-00999 freely available EZB journals
subjects Academic achievement
Accuracy
Algorithms
Applied and Technical Physics
Artificial intelligence
Artificial neural networks
Back propagation
Back propagation networks
Bibliometrics
Chemistry/Food Science
Colleges & universities
Data science
Discriminant analysis
Earth Sciences
Educational research
Engineering
Engineering: Frontiers in Machine Learning: Algorithms and Applications (FMLAA)
Entrance examinations
Environment
Histograms
Hypothesis testing
Learning
Materials Science
Modelling
Neural networks
Neurons
Performance evaluation
Predictions
Quality of education
Research Article
Statistical analysis
Statistical methods
Statistics
Students
Success
Teaching
University students
title Modelling, prediction and classification of student academic performance using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling,%20prediction%20and%20classification%20of%20student%20academic%20performance%20using%20artificial%20neural%20networks&rft.jtitle=SN%20applied%20sciences&rft.au=Lau,%20E.%20T.&rft.date=2019-09-01&rft.volume=1&rft.issue=9&rft.spage=982&rft.pages=982-&rft.artnum=982&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-019-0884-7&rft_dat=%3Cproquest_cross%3E2729543133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729543133&rft_id=info:pmid/&rfr_iscdi=true