Modelling, prediction and classification of student academic performance using artificial neural networks
The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations...
Gespeichert in:
Veröffentlicht in: | SN applied sciences 2019-09, Vol.1 (9), p.982, Article 982 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 982 |
container_title | SN applied sciences |
container_volume | 1 |
creator | Lau, E. T. Sun, L. Yang, Q. |
description | The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations are used to identify the factors that likely affect the students’ performance. The neural network is modelled with 11 input variables, two layers of hidden neurons, and one output layer. Levenberg–Marquardt algorithm is employed as the backpropagation training rule. The performance of neural network model is evaluated through the error performance, regression, error histogram, confusion matrix and area under the receiver operating characteristics curve. Overall, the neural network model has achieved a good prediction accuracy of 84.8%, along with limitations. |
doi_str_mv | 10.1007/s42452-019-0884-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2729543133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729543133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-14374c51ef1018d332d48009a5479832ad5f60f744157fb87e8a2d6388f40a2c3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWGofwF3AraO5NpmlFG9QcaPrEHMpqdNkTDKIb--0I7pydQ6H__sPfACcY3SFERLXhRHGSYNw2yApWSOOwIxwQhvaCnz8uy_pKViUskUIEdFSJukMhKdkXdeFuLmEfXY2mBpShDpaaDpdSvDB6MMpeVjqYF2sUBtt3S4Y2LvsU97paBwcylgCda57JOgORjfkw6ifKb-XM3DidVfc4mfOwevd7cvqoVk_3z-ubtaNobytDWZUMMOx8xhhaSkllkmEWs2ZaCUl2nK_RF4whrnwb1I4qYldUik9Q5oYOgcXU2-f08fgSlXbNOQ4vlREkJYziikdU3hKmZxKyc6rPoedzl8KI7WXqiapapSq9lKVGBkyMWXMxo3Lf83_Q9_W3HpJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729543133</pqid></control><display><type>article</type><title>Modelling, prediction and classification of student academic performance using artificial neural networks</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lau, E. T. ; Sun, L. ; Yang, Q.</creator><creatorcontrib>Lau, E. T. ; Sun, L. ; Yang, Q.</creatorcontrib><description>The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations are used to identify the factors that likely affect the students’ performance. The neural network is modelled with 11 input variables, two layers of hidden neurons, and one output layer. Levenberg–Marquardt algorithm is employed as the backpropagation training rule. The performance of neural network model is evaluated through the error performance, regression, error histogram, confusion matrix and area under the receiver operating characteristics curve. Overall, the neural network model has achieved a good prediction accuracy of 84.8%, along with limitations.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-019-0884-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Academic achievement ; Accuracy ; Algorithms ; Applied and Technical Physics ; Artificial intelligence ; Artificial neural networks ; Back propagation ; Back propagation networks ; Bibliometrics ; Chemistry/Food Science ; Colleges & universities ; Data science ; Discriminant analysis ; Earth Sciences ; Educational research ; Engineering ; Engineering: Frontiers in Machine Learning: Algorithms and Applications (FMLAA) ; Entrance examinations ; Environment ; Histograms ; Hypothesis testing ; Learning ; Materials Science ; Modelling ; Neural networks ; Neurons ; Performance evaluation ; Predictions ; Quality of education ; Research Article ; Statistical analysis ; Statistical methods ; Statistics ; Students ; Success ; Teaching ; University students</subject><ispartof>SN applied sciences, 2019-09, Vol.1 (9), p.982, Article 982</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-14374c51ef1018d332d48009a5479832ad5f60f744157fb87e8a2d6388f40a2c3</citedby><cites>FETCH-LOGICAL-c359t-14374c51ef1018d332d48009a5479832ad5f60f744157fb87e8a2d6388f40a2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lau, E. T.</creatorcontrib><creatorcontrib>Sun, L.</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><title>Modelling, prediction and classification of student academic performance using artificial neural networks</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations are used to identify the factors that likely affect the students’ performance. The neural network is modelled with 11 input variables, two layers of hidden neurons, and one output layer. Levenberg–Marquardt algorithm is employed as the backpropagation training rule. The performance of neural network model is evaluated through the error performance, regression, error histogram, confusion matrix and area under the receiver operating characteristics curve. Overall, the neural network model has achieved a good prediction accuracy of 84.8%, along with limitations.</description><subject>Academic achievement</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Bibliometrics</subject><subject>Chemistry/Food Science</subject><subject>Colleges & universities</subject><subject>Data science</subject><subject>Discriminant analysis</subject><subject>Earth Sciences</subject><subject>Educational research</subject><subject>Engineering</subject><subject>Engineering: Frontiers in Machine Learning: Algorithms and Applications (FMLAA)</subject><subject>Entrance examinations</subject><subject>Environment</subject><subject>Histograms</subject><subject>Hypothesis testing</subject><subject>Learning</subject><subject>Materials Science</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Performance evaluation</subject><subject>Predictions</subject><subject>Quality of education</subject><subject>Research Article</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Students</subject><subject>Success</subject><subject>Teaching</subject><subject>University students</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kMtKAzEUhoMoWGofwF3AraO5NpmlFG9QcaPrEHMpqdNkTDKIb--0I7pydQ6H__sPfACcY3SFERLXhRHGSYNw2yApWSOOwIxwQhvaCnz8uy_pKViUskUIEdFSJukMhKdkXdeFuLmEfXY2mBpShDpaaDpdSvDB6MMpeVjqYF2sUBtt3S4Y2LvsU97paBwcylgCda57JOgORjfkw6ifKb-XM3DidVfc4mfOwevd7cvqoVk_3z-ubtaNobytDWZUMMOx8xhhaSkllkmEWs2ZaCUl2nK_RF4whrnwb1I4qYldUik9Q5oYOgcXU2-f08fgSlXbNOQ4vlREkJYziikdU3hKmZxKyc6rPoedzl8KI7WXqiapapSq9lKVGBkyMWXMxo3Lf83_Q9_W3HpJ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Lau, E. T.</creator><creator>Sun, L.</creator><creator>Yang, Q.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>Modelling, prediction and classification of student academic performance using artificial neural networks</title><author>Lau, E. T. ; Sun, L. ; Yang, Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-14374c51ef1018d332d48009a5479832ad5f60f744157fb87e8a2d6388f40a2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Academic achievement</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Bibliometrics</topic><topic>Chemistry/Food Science</topic><topic>Colleges & universities</topic><topic>Data science</topic><topic>Discriminant analysis</topic><topic>Earth Sciences</topic><topic>Educational research</topic><topic>Engineering</topic><topic>Engineering: Frontiers in Machine Learning: Algorithms and Applications (FMLAA)</topic><topic>Entrance examinations</topic><topic>Environment</topic><topic>Histograms</topic><topic>Hypothesis testing</topic><topic>Learning</topic><topic>Materials Science</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Performance evaluation</topic><topic>Predictions</topic><topic>Quality of education</topic><topic>Research Article</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Students</topic><topic>Success</topic><topic>Teaching</topic><topic>University students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, E. T.</creatorcontrib><creatorcontrib>Sun, L.</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, E. T.</au><au>Sun, L.</au><au>Yang, Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling, prediction and classification of student academic performance using artificial neural networks</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>1</volume><issue>9</issue><spage>982</spage><pages>982-</pages><artnum>982</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations are used to identify the factors that likely affect the students’ performance. The neural network is modelled with 11 input variables, two layers of hidden neurons, and one output layer. Levenberg–Marquardt algorithm is employed as the backpropagation training rule. The performance of neural network model is evaluated through the error performance, regression, error histogram, confusion matrix and area under the receiver operating characteristics curve. Overall, the neural network model has achieved a good prediction accuracy of 84.8%, along with limitations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-019-0884-7</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2523-3963 |
ispartof | SN applied sciences, 2019-09, Vol.1 (9), p.982, Article 982 |
issn | 2523-3963 2523-3971 |
language | eng |
recordid | cdi_proquest_journals_2729543133 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Academic achievement Accuracy Algorithms Applied and Technical Physics Artificial intelligence Artificial neural networks Back propagation Back propagation networks Bibliometrics Chemistry/Food Science Colleges & universities Data science Discriminant analysis Earth Sciences Educational research Engineering Engineering: Frontiers in Machine Learning: Algorithms and Applications (FMLAA) Entrance examinations Environment Histograms Hypothesis testing Learning Materials Science Modelling Neural networks Neurons Performance evaluation Predictions Quality of education Research Article Statistical analysis Statistical methods Statistics Students Success Teaching University students |
title | Modelling, prediction and classification of student academic performance using artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling,%20prediction%20and%20classification%20of%20student%20academic%20performance%20using%20artificial%20neural%20networks&rft.jtitle=SN%20applied%20sciences&rft.au=Lau,%20E.%20T.&rft.date=2019-09-01&rft.volume=1&rft.issue=9&rft.spage=982&rft.pages=982-&rft.artnum=982&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-019-0884-7&rft_dat=%3Cproquest_cross%3E2729543133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729543133&rft_id=info:pmid/&rfr_iscdi=true |