UFO2: A unified pre-training framework for online and offline speech recognition

In this paper, we propose a Unified pre-training Framework for Online and Offline (UFO2) Automatic Speech Recognition (ASR), which 1) simplifies the two separate training workflows for online and offline modes into one process, and 2) improves the Word Error Rate (WER) performance with limited utter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Fu, Li, Li, Siqi, Li, Qingtao, Deng, Liping, Li, Fangzhu, Lu, Fan, Chen, Meng, He, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fu, Li
Li, Siqi
Li, Qingtao
Deng, Liping
Li, Fangzhu
Lu, Fan
Chen, Meng
He, Xiaodong
description In this paper, we propose a Unified pre-training Framework for Online and Offline (UFO2) Automatic Speech Recognition (ASR), which 1) simplifies the two separate training workflows for online and offline modes into one process, and 2) improves the Word Error Rate (WER) performance with limited utterance annotating. Specifically, we extend the conventional offline-mode Self-Supervised Learning (SSL)-based ASR approach to a unified manner, where the model training is conditioned on both the full-context and dynamic-chunked inputs. To enhance the pre-trained representation model, stop-gradient operation is applied to decouple the online-mode objectives to the quantizer. Moreover, in both the pre-training and the downstream fine-tuning stages, joint losses are proposed to train the unified model with full-weight sharing for the two modes. Experimental results on the LibriSpeech dataset show that UFO2 outperforms the SSL-based baseline method by 29.7% and 18.2% relative WER reduction in offline and online modes, respectively.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2729291845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729291845</sourcerecordid><originalsourceid>FETCH-proquest_journals_27292918453</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_eNBZ0KemdotIutWhzrLoW1uzt7ar9PtF9AGdZmBmJjyM4yjIE8SF8J3rwjDETYZpGnvifC1PuIUdTKyVpgYGS8FopWbNLSgrH_Qy9g7KWDDcayaQ3IBR6utuIKpvYKk2LetRG16JuZK9I__HpViXh8v-GAzWPCdyY9WZyfInVZhhgUWUJ2n83_UG-Mw-iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729291845</pqid></control><display><type>article</type><title>UFO2: A unified pre-training framework for online and offline speech recognition</title><source>Free E- Journals</source><creator>Fu, Li ; Li, Siqi ; Li, Qingtao ; Deng, Liping ; Li, Fangzhu ; Lu, Fan ; Chen, Meng ; He, Xiaodong</creator><creatorcontrib>Fu, Li ; Li, Siqi ; Li, Qingtao ; Deng, Liping ; Li, Fangzhu ; Lu, Fan ; Chen, Meng ; He, Xiaodong</creatorcontrib><description>In this paper, we propose a Unified pre-training Framework for Online and Offline (UFO2) Automatic Speech Recognition (ASR), which 1) simplifies the two separate training workflows for online and offline modes into one process, and 2) improves the Word Error Rate (WER) performance with limited utterance annotating. Specifically, we extend the conventional offline-mode Self-Supervised Learning (SSL)-based ASR approach to a unified manner, where the model training is conditioned on both the full-context and dynamic-chunked inputs. To enhance the pre-trained representation model, stop-gradient operation is applied to decouple the online-mode objectives to the quantizer. Moreover, in both the pre-training and the downstream fine-tuning stages, joint losses are proposed to train the unified model with full-weight sharing for the two modes. Experimental results on the LibriSpeech dataset show that UFO2 outperforms the SSL-based baseline method by 29.7% and 18.2% relative WER reduction in offline and online modes, respectively.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automatic speech recognition ; Training</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fu, Li</creatorcontrib><creatorcontrib>Li, Siqi</creatorcontrib><creatorcontrib>Li, Qingtao</creatorcontrib><creatorcontrib>Deng, Liping</creatorcontrib><creatorcontrib>Li, Fangzhu</creatorcontrib><creatorcontrib>Lu, Fan</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><title>UFO2: A unified pre-training framework for online and offline speech recognition</title><title>arXiv.org</title><description>In this paper, we propose a Unified pre-training Framework for Online and Offline (UFO2) Automatic Speech Recognition (ASR), which 1) simplifies the two separate training workflows for online and offline modes into one process, and 2) improves the Word Error Rate (WER) performance with limited utterance annotating. Specifically, we extend the conventional offline-mode Self-Supervised Learning (SSL)-based ASR approach to a unified manner, where the model training is conditioned on both the full-context and dynamic-chunked inputs. To enhance the pre-trained representation model, stop-gradient operation is applied to decouple the online-mode objectives to the quantizer. Moreover, in both the pre-training and the downstream fine-tuning stages, joint losses are proposed to train the unified model with full-weight sharing for the two modes. Experimental results on the LibriSpeech dataset show that UFO2 outperforms the SSL-based baseline method by 29.7% and 18.2% relative WER reduction in offline and online modes, respectively.</description><subject>Automatic speech recognition</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAUAJcgSMp_eNBZ0KemdotIutWhzrLoW1uzt7ar9PtF9AGdZmBmJjyM4yjIE8SF8J3rwjDETYZpGnvifC1PuIUdTKyVpgYGS8FopWbNLSgrH_Qy9g7KWDDcayaQ3IBR6utuIKpvYKk2LetRG16JuZK9I__HpViXh8v-GAzWPCdyY9WZyfInVZhhgUWUJ2n83_UG-Mw-iw</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Fu, Li</creator><creator>Li, Siqi</creator><creator>Li, Qingtao</creator><creator>Deng, Liping</creator><creator>Li, Fangzhu</creator><creator>Lu, Fan</creator><creator>Chen, Meng</creator><creator>He, Xiaodong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230403</creationdate><title>UFO2: A unified pre-training framework for online and offline speech recognition</title><author>Fu, Li ; Li, Siqi ; Li, Qingtao ; Deng, Liping ; Li, Fangzhu ; Lu, Fan ; Chen, Meng ; He, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27292918453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic speech recognition</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Li</creatorcontrib><creatorcontrib>Li, Siqi</creatorcontrib><creatorcontrib>Li, Qingtao</creatorcontrib><creatorcontrib>Deng, Liping</creatorcontrib><creatorcontrib>Li, Fangzhu</creatorcontrib><creatorcontrib>Lu, Fan</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Li</au><au>Li, Siqi</au><au>Li, Qingtao</au><au>Deng, Liping</au><au>Li, Fangzhu</au><au>Lu, Fan</au><au>Chen, Meng</au><au>He, Xiaodong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>UFO2: A unified pre-training framework for online and offline speech recognition</atitle><jtitle>arXiv.org</jtitle><date>2023-04-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper, we propose a Unified pre-training Framework for Online and Offline (UFO2) Automatic Speech Recognition (ASR), which 1) simplifies the two separate training workflows for online and offline modes into one process, and 2) improves the Word Error Rate (WER) performance with limited utterance annotating. Specifically, we extend the conventional offline-mode Self-Supervised Learning (SSL)-based ASR approach to a unified manner, where the model training is conditioned on both the full-context and dynamic-chunked inputs. To enhance the pre-trained representation model, stop-gradient operation is applied to decouple the online-mode objectives to the quantizer. Moreover, in both the pre-training and the downstream fine-tuning stages, joint losses are proposed to train the unified model with full-weight sharing for the two modes. Experimental results on the LibriSpeech dataset show that UFO2 outperforms the SSL-based baseline method by 29.7% and 18.2% relative WER reduction in offline and online modes, respectively.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2729291845
source Free E- Journals
subjects Automatic speech recognition
Training
title UFO2: A unified pre-training framework for online and offline speech recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=UFO2:%20A%20unified%20pre-training%20framework%20for%20online%20and%20offline%20speech%20recognition&rft.jtitle=arXiv.org&rft.au=Fu,%20Li&rft.date=2023-04-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2729291845%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729291845&rft_id=info:pmid/&rfr_iscdi=true