A parametric approach to the estimation of convex risk functionals based on Wasserstein distance

In this paper, we explore a static setting for the assessment of risk in the context of mathematical finance and actuarial science that takes into account model uncertainty in the distribution of a possibly infinite-dimensional risk factor. We allow for perturbations around a baseline model, measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Nendel, Max, Sgarabottolo, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nendel, Max
Sgarabottolo, Alessandro
description In this paper, we explore a static setting for the assessment of risk in the context of mathematical finance and actuarial science that takes into account model uncertainty in the distribution of a possibly infinite-dimensional risk factor. We allow for perturbations around a baseline model, measured via Wasserstein distance, and we investigate to which extent this form of probabilistic imprecision can be parametrized. The aim is to come up with a convex risk functional that incorporates a sefety margin with respect to nonparametric uncertainty and still can be approximated through parametrized models. The particular form of the parametrization allows us to develop a numerical method, based on neural networks, which gives both the value of the risk functional and the optimal perturbation of the reference measure. Moreover, we study the problem under additional constraints on the perturbations, namely, a mean and a martingale constraint. We show that, in both cases, under suitable conditions on the loss function, it is still possible to estimate the risk functional by passing to a parametric family of perturbed models, which again allows for a numerical approximation via neural networks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2729291743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729291743</sourcerecordid><originalsourceid>FETCH-proquest_journals_27292917433</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRYMgWNQ7DLgutIm1dimieADBpY7plKbapGZS8fi24AFcffg83puISCqVxtu1lDOxZG6SJJGbXGaZisRtBx16bCl4owG7zjvUNQQHoSYgDqbFYJwFV4F29k0f8IYfUPVWjz8-Ge7IVMLAXJCZPAcyFkrDAa2mhZhWA0TL387F6ng470_xUHr1Q-DauN6PnqvMZSGLNF8r9R_1BS2ZRX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729291743</pqid></control><display><type>article</type><title>A parametric approach to the estimation of convex risk functionals based on Wasserstein distance</title><source>Free E- Journals</source><creator>Nendel, Max ; Sgarabottolo, Alessandro</creator><creatorcontrib>Nendel, Max ; Sgarabottolo, Alessandro</creatorcontrib><description>In this paper, we explore a static setting for the assessment of risk in the context of mathematical finance and actuarial science that takes into account model uncertainty in the distribution of a possibly infinite-dimensional risk factor. We allow for perturbations around a baseline model, measured via Wasserstein distance, and we investigate to which extent this form of probabilistic imprecision can be parametrized. The aim is to come up with a convex risk functional that incorporates a sefety margin with respect to nonparametric uncertainty and still can be approximated through parametrized models. The particular form of the parametrization allows us to develop a numerical method, based on neural networks, which gives both the value of the risk functional and the optimal perturbation of the reference measure. Moreover, we study the problem under additional constraints on the perturbations, namely, a mean and a martingale constraint. We show that, in both cases, under suitable conditions on the loss function, it is still possible to estimate the risk functional by passing to a parametric family of perturbed models, which again allows for a numerical approximation via neural networks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Martingales ; Mathematical models ; Neural networks ; Numerical methods ; Parameterization ; Perturbation ; Risk analysis ; Uncertainty</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Nendel, Max</creatorcontrib><creatorcontrib>Sgarabottolo, Alessandro</creatorcontrib><title>A parametric approach to the estimation of convex risk functionals based on Wasserstein distance</title><title>arXiv.org</title><description>In this paper, we explore a static setting for the assessment of risk in the context of mathematical finance and actuarial science that takes into account model uncertainty in the distribution of a possibly infinite-dimensional risk factor. We allow for perturbations around a baseline model, measured via Wasserstein distance, and we investigate to which extent this form of probabilistic imprecision can be parametrized. The aim is to come up with a convex risk functional that incorporates a sefety margin with respect to nonparametric uncertainty and still can be approximated through parametrized models. The particular form of the parametrization allows us to develop a numerical method, based on neural networks, which gives both the value of the risk functional and the optimal perturbation of the reference measure. Moreover, we study the problem under additional constraints on the perturbations, namely, a mean and a martingale constraint. We show that, in both cases, under suitable conditions on the loss function, it is still possible to estimate the risk functional by passing to a parametric family of perturbed models, which again allows for a numerical approximation via neural networks.</description><subject>Approximation</subject><subject>Martingales</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>Parameterization</subject><subject>Perturbation</subject><subject>Risk analysis</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUEKwjAQRYMgWNQ7DLgutIm1dimieADBpY7plKbapGZS8fi24AFcffg83puISCqVxtu1lDOxZG6SJJGbXGaZisRtBx16bCl4owG7zjvUNQQHoSYgDqbFYJwFV4F29k0f8IYfUPVWjz8-Ge7IVMLAXJCZPAcyFkrDAa2mhZhWA0TL387F6ng470_xUHr1Q-DauN6PnqvMZSGLNF8r9R_1BS2ZRX8</recordid><startdate>20240812</startdate><enddate>20240812</enddate><creator>Nendel, Max</creator><creator>Sgarabottolo, Alessandro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240812</creationdate><title>A parametric approach to the estimation of convex risk functionals based on Wasserstein distance</title><author>Nendel, Max ; Sgarabottolo, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27292917433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Martingales</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>Parameterization</topic><topic>Perturbation</topic><topic>Risk analysis</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Nendel, Max</creatorcontrib><creatorcontrib>Sgarabottolo, Alessandro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nendel, Max</au><au>Sgarabottolo, Alessandro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A parametric approach to the estimation of convex risk functionals based on Wasserstein distance</atitle><jtitle>arXiv.org</jtitle><date>2024-08-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we explore a static setting for the assessment of risk in the context of mathematical finance and actuarial science that takes into account model uncertainty in the distribution of a possibly infinite-dimensional risk factor. We allow for perturbations around a baseline model, measured via Wasserstein distance, and we investigate to which extent this form of probabilistic imprecision can be parametrized. The aim is to come up with a convex risk functional that incorporates a sefety margin with respect to nonparametric uncertainty and still can be approximated through parametrized models. The particular form of the parametrization allows us to develop a numerical method, based on neural networks, which gives both the value of the risk functional and the optimal perturbation of the reference measure. Moreover, we study the problem under additional constraints on the perturbations, namely, a mean and a martingale constraint. We show that, in both cases, under suitable conditions on the loss function, it is still possible to estimate the risk functional by passing to a parametric family of perturbed models, which again allows for a numerical approximation via neural networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2729291743
source Free E- Journals
subjects Approximation
Martingales
Mathematical models
Neural networks
Numerical methods
Parameterization
Perturbation
Risk analysis
Uncertainty
title A parametric approach to the estimation of convex risk functionals based on Wasserstein distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20parametric%20approach%20to%20the%20estimation%20of%20convex%20risk%20functionals%20based%20on%20Wasserstein%20distance&rft.jtitle=arXiv.org&rft.au=Nendel,%20Max&rft.date=2024-08-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2729291743%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729291743&rft_id=info:pmid/&rfr_iscdi=true