Experimental Analysis of Pressure Shielding Mechanisms in Bioinspired Unidirectional Canopies
Previous studies have demonstrated that treatments such as a canopy or finlets placed within a boundary layer can shield surfaces from unsteady pressure fluctuations without substantially compromising the aerodynamic performance. This paper describes research into fundamental mechanisms of this phen...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2022-11, Vol.60 (11), p.6447-6462 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6462 |
---|---|
container_issue | 11 |
container_start_page | 6447 |
container_title | AIAA journal |
container_volume | 60 |
creator | Hari, Nandita Nurani Szöke, Máté Devenport, William J. Glegg, Stewart |
description | Previous studies have demonstrated that treatments such as a canopy or finlets placed within a boundary layer can shield surfaces from unsteady pressure fluctuations without substantially compromising the aerodynamic performance. This paper describes research into fundamental mechanisms of this phenomenon known as pressure shielding. Unidirectional canopy is an idealized surface treatment which consists of a streamwise array of rods cantilevered at the downstream end, inspired from the downy coating on owls’ wings. Experiments show that such a canopy attenuates the surface pressure in two distinct frequency ranges. At low frequencies associated with convective scales much greater than the canopy height, the attenuation spectra show scaling on the Strouhal number based on canopy height. At high frequencies, associated with convective scales of the order of the canopy height or lower, a dissipation-type frequency scaling appears more appropriate. The ratio of streamwise distance over the height is an important parameter at the low-frequency regions of attenuation, while the open-area ratio controls the broadband magnitude of attenuation spectra. Spatial and temporal correlations further shed light on the effects of the canopy in reducing the larger, energetic turbulent structures associated with the wall jet unsteady surface pressure fluctuations. |
doi_str_mv | 10.2514/1.J061461 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2729135063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729135063</sourcerecordid><originalsourceid>FETCH-LOGICAL-a283t-7de70edce17d741c859a3987c73442cf344d922ffbec4c3a1aa4364ee1ed70843</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWKsH_0FAEDxszSTZze6xlvpFRUELXmSJyaxNabNrsgX7741U8OBlPuDhYeYl5BTYiOcgL2F0zwqQBeyRAeRCZKLMX_fJgDEGGcicH5KjGJdp46qEAXmbfnUY3Bp9r1d07PVqG12kbUOfAsa4CUifFw5X1vkP-oBmob2L60idp1eudT52LqClc-9sGkzv2qSgE-3bzmE8JgeNXkU8-e1DMr-evkxus9njzd1kPMs0L0WfKYuKoTUIyioJpswrLapSGSWk5KZJ1VacN807GmmEBq2lKCQioFWslGJIznbeLrSfG4x9vWw3IV0Sa654BSJnhUjUxY4yoY0xYFN36XMdtjWw-ie9Gurf9BJ7vmO10_rP9h_8Biycbks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729135063</pqid></control><display><type>article</type><title>Experimental Analysis of Pressure Shielding Mechanisms in Bioinspired Unidirectional Canopies</title><source>Alma/SFX Local Collection</source><creator>Hari, Nandita Nurani ; Szöke, Máté ; Devenport, William J. ; Glegg, Stewart</creator><creatorcontrib>Hari, Nandita Nurani ; Szöke, Máté ; Devenport, William J. ; Glegg, Stewart</creatorcontrib><description>Previous studies have demonstrated that treatments such as a canopy or finlets placed within a boundary layer can shield surfaces from unsteady pressure fluctuations without substantially compromising the aerodynamic performance. This paper describes research into fundamental mechanisms of this phenomenon known as pressure shielding. Unidirectional canopy is an idealized surface treatment which consists of a streamwise array of rods cantilevered at the downstream end, inspired from the downy coating on owls’ wings. Experiments show that such a canopy attenuates the surface pressure in two distinct frequency ranges. At low frequencies associated with convective scales much greater than the canopy height, the attenuation spectra show scaling on the Strouhal number based on canopy height. At high frequencies, associated with convective scales of the order of the canopy height or lower, a dissipation-type frequency scaling appears more appropriate. The ratio of streamwise distance over the height is an important parameter at the low-frequency regions of attenuation, while the open-area ratio controls the broadband magnitude of attenuation spectra. Spatial and temporal correlations further shed light on the effects of the canopy in reducing the larger, energetic turbulent structures associated with the wall jet unsteady surface pressure fluctuations.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J061461</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Acoustics ; Attenuation ; Aviation ; Boundary layers ; Broadband ; Canopies ; Energy ; Flow control ; Frequency ranges ; Ocean engineering ; Pressure ; Reynolds number ; Shielding ; Spectra ; Strouhal number ; Surface treatment ; Velocity ; Wall jets</subject><ispartof>AIAA journal, 2022-11, Vol.60 (11), p.6447-6462</ispartof><rights>Copyright © 2022 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2022 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a283t-7de70edce17d741c859a3987c73442cf344d922ffbec4c3a1aa4364ee1ed70843</cites><orcidid>0000-0002-6639-6998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hari, Nandita Nurani</creatorcontrib><creatorcontrib>Szöke, Máté</creatorcontrib><creatorcontrib>Devenport, William J.</creatorcontrib><creatorcontrib>Glegg, Stewart</creatorcontrib><title>Experimental Analysis of Pressure Shielding Mechanisms in Bioinspired Unidirectional Canopies</title><title>AIAA journal</title><description>Previous studies have demonstrated that treatments such as a canopy or finlets placed within a boundary layer can shield surfaces from unsteady pressure fluctuations without substantially compromising the aerodynamic performance. This paper describes research into fundamental mechanisms of this phenomenon known as pressure shielding. Unidirectional canopy is an idealized surface treatment which consists of a streamwise array of rods cantilevered at the downstream end, inspired from the downy coating on owls’ wings. Experiments show that such a canopy attenuates the surface pressure in two distinct frequency ranges. At low frequencies associated with convective scales much greater than the canopy height, the attenuation spectra show scaling on the Strouhal number based on canopy height. At high frequencies, associated with convective scales of the order of the canopy height or lower, a dissipation-type frequency scaling appears more appropriate. The ratio of streamwise distance over the height is an important parameter at the low-frequency regions of attenuation, while the open-area ratio controls the broadband magnitude of attenuation spectra. Spatial and temporal correlations further shed light on the effects of the canopy in reducing the larger, energetic turbulent structures associated with the wall jet unsteady surface pressure fluctuations.</description><subject>Acoustics</subject><subject>Attenuation</subject><subject>Aviation</subject><subject>Boundary layers</subject><subject>Broadband</subject><subject>Canopies</subject><subject>Energy</subject><subject>Flow control</subject><subject>Frequency ranges</subject><subject>Ocean engineering</subject><subject>Pressure</subject><subject>Reynolds number</subject><subject>Shielding</subject><subject>Spectra</subject><subject>Strouhal number</subject><subject>Surface treatment</subject><subject>Velocity</subject><subject>Wall jets</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkE1LAzEQhoMoWKsH_0FAEDxszSTZze6xlvpFRUELXmSJyaxNabNrsgX7741U8OBlPuDhYeYl5BTYiOcgL2F0zwqQBeyRAeRCZKLMX_fJgDEGGcicH5KjGJdp46qEAXmbfnUY3Bp9r1d07PVqG12kbUOfAsa4CUifFw5X1vkP-oBmob2L60idp1eudT52LqClc-9sGkzv2qSgE-3bzmE8JgeNXkU8-e1DMr-evkxus9njzd1kPMs0L0WfKYuKoTUIyioJpswrLapSGSWk5KZJ1VacN807GmmEBq2lKCQioFWslGJIznbeLrSfG4x9vWw3IV0Sa654BSJnhUjUxY4yoY0xYFN36XMdtjWw-ie9Gurf9BJ7vmO10_rP9h_8Biycbks</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Hari, Nandita Nurani</creator><creator>Szöke, Máté</creator><creator>Devenport, William J.</creator><creator>Glegg, Stewart</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6639-6998</orcidid></search><sort><creationdate>202211</creationdate><title>Experimental Analysis of Pressure Shielding Mechanisms in Bioinspired Unidirectional Canopies</title><author>Hari, Nandita Nurani ; Szöke, Máté ; Devenport, William J. ; Glegg, Stewart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a283t-7de70edce17d741c859a3987c73442cf344d922ffbec4c3a1aa4364ee1ed70843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Attenuation</topic><topic>Aviation</topic><topic>Boundary layers</topic><topic>Broadband</topic><topic>Canopies</topic><topic>Energy</topic><topic>Flow control</topic><topic>Frequency ranges</topic><topic>Ocean engineering</topic><topic>Pressure</topic><topic>Reynolds number</topic><topic>Shielding</topic><topic>Spectra</topic><topic>Strouhal number</topic><topic>Surface treatment</topic><topic>Velocity</topic><topic>Wall jets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hari, Nandita Nurani</creatorcontrib><creatorcontrib>Szöke, Máté</creatorcontrib><creatorcontrib>Devenport, William J.</creatorcontrib><creatorcontrib>Glegg, Stewart</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hari, Nandita Nurani</au><au>Szöke, Máté</au><au>Devenport, William J.</au><au>Glegg, Stewart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Analysis of Pressure Shielding Mechanisms in Bioinspired Unidirectional Canopies</atitle><jtitle>AIAA journal</jtitle><date>2022-11</date><risdate>2022</risdate><volume>60</volume><issue>11</issue><spage>6447</spage><epage>6462</epage><pages>6447-6462</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Previous studies have demonstrated that treatments such as a canopy or finlets placed within a boundary layer can shield surfaces from unsteady pressure fluctuations without substantially compromising the aerodynamic performance. This paper describes research into fundamental mechanisms of this phenomenon known as pressure shielding. Unidirectional canopy is an idealized surface treatment which consists of a streamwise array of rods cantilevered at the downstream end, inspired from the downy coating on owls’ wings. Experiments show that such a canopy attenuates the surface pressure in two distinct frequency ranges. At low frequencies associated with convective scales much greater than the canopy height, the attenuation spectra show scaling on the Strouhal number based on canopy height. At high frequencies, associated with convective scales of the order of the canopy height or lower, a dissipation-type frequency scaling appears more appropriate. The ratio of streamwise distance over the height is an important parameter at the low-frequency regions of attenuation, while the open-area ratio controls the broadband magnitude of attenuation spectra. Spatial and temporal correlations further shed light on the effects of the canopy in reducing the larger, energetic turbulent structures associated with the wall jet unsteady surface pressure fluctuations.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J061461</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6639-6998</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2022-11, Vol.60 (11), p.6447-6462 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_journals_2729135063 |
source | Alma/SFX Local Collection |
subjects | Acoustics Attenuation Aviation Boundary layers Broadband Canopies Energy Flow control Frequency ranges Ocean engineering Pressure Reynolds number Shielding Spectra Strouhal number Surface treatment Velocity Wall jets |
title | Experimental Analysis of Pressure Shielding Mechanisms in Bioinspired Unidirectional Canopies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Analysis%20of%20Pressure%20Shielding%20Mechanisms%20in%20Bioinspired%20Unidirectional%20Canopies&rft.jtitle=AIAA%20journal&rft.au=Hari,%20Nandita%20Nurani&rft.date=2022-11&rft.volume=60&rft.issue=11&rft.spage=6447&rft.epage=6462&rft.pages=6447-6462&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J061461&rft_dat=%3Cproquest_aiaa_%3E2729135063%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729135063&rft_id=info:pmid/&rfr_iscdi=true |