N–Ar–He–CO2 Systematics Combined with H2O, Cl, K Abundances in MORB Glasses Demonstrate Interaction of Magmatic and Hydrothermal Systems: a Case for MAR at 16°07′–17°11′ N

Here we present data on nitrogen and argon isotopic compositions and He–Ar–N–C(CO 2 ) elemental ratios obtained during stepwise crushing of fresh basaltic glasses of the N-MORB family from Mid-Atlantic ridge rift valley at 16°07′–17°11′ N. The bulk nitrogen isotopic composition in the samples varies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry international 2022, Vol.60 (11), p.1068-1086
Hauptverfasser: Buikin, A. I., Silantyev, S. A., Verchovsky, A. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1086
container_issue 11
container_start_page 1068
container_title Geochemistry international
container_volume 60
creator Buikin, A. I.
Silantyev, S. A.
Verchovsky, A. B.
description Here we present data on nitrogen and argon isotopic compositions and He–Ar–N–C(CO 2 ) elemental ratios obtained during stepwise crushing of fresh basaltic glasses of the N-MORB family from Mid-Atlantic ridge rift valley at 16°07′–17°11′ N. The bulk nitrogen isotopic composition in the samples varies from δ 15 N (total) = –5.2 ± 0.2‰ (i.e., typical for MORB glasses) to δ 15 N (total) = +4.6 ± 0.3‰ (pointing to the presence of organic nitrogen). The δ 15 N variations in the crushing steps are wider and range from –13.8 to +8.3‰. The 40 Ar/ 36 Ar ratios in the crushing steps vary from the value close to that in the atmosphere (~296) up to 11 100 ± 590 (the bulk values cover a range from 355 ± 11 to 2799 ± 159). Correlations between argon and nitrogen isotopic and elemental ratios imply mixing between an N-MORB type mantle component and a surface-derived component enriched in 15 N. Carbon (CO 2 )—nitrogen systematic suggests that the most plausible source for isotopically heavy nitrogen is the organic matter brought into the fluid source. Strong relationships between Ar and N isotopic compositions and Cl, H 2 O, and K, as well as Ar–N 2 , N 2 –CO 2 and Ar–He–CO 2 systematics, indicate that melt degassing and contamination with atmospheric Аr and organic nitrogen are the two dominant processes responsible for elemental and isotopic variation. The contamination of magmatic melts with surface related noble gases and organic nitrogen occurred through their interaction with high salinity hydrothermal brines. We propose that this contamination mechanism may be universal and largely responsible for the observed variations in the isotopic composition for a number of volatile elements in MORB glasses. However larger set of samples from the hydrothermal fields’ related areas has to be studied for better understanding how common is the established contamination mechanism.
doi_str_mv 10.1134/S0016702922110027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2729057752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729057752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1617-7471bd6e84ee15aee049d79418245fccfa101a41f8b0da57a6b540d555488f363</originalsourceid><addsrcrecordid>eNp1Uc1u1DAQthBILKUP0NtIXBvweO044bak0K3odqX-nCMnmbSpNnaxvUJ76zvwIhU3rn2UPglethIHxGV-NN_PSB9jB8jfI07lhwvOMddclEIgci70CzZBpfIMy7x4ySbbc7a9v2ZvQrjlXMppqSfs19nT_Y-ZT2VOqVRLARebEGk0cWgDVG5sBksdfB_iDczF8hCq1SF8hVmztp2xLQUYLCyW55_geGVCSPsRjc6G6E0kOLGRvGnj4Cy4Hhbm-o8wGNvBfNN5F2_Ij2b1bBo-goHKBILeeVjMzsFEwPzxgeun-5_pP9SPD4hphrO37FVvVoH2n_seu_ry-bKaZ6fL45Nqdpq1mKPOtNTYdDkVkgiVIeKy7HQpsRBS9W3bG-RoJPZFwzujtMkbJXmnlJJF0U_z6R57t9O98-7bmkKsb93a22RZCy1KrrRWIqFwh2q9C8FTX9_5YTR-UyOvtwnV_ySUOGLHCQlrr8n_Vf4_6TfOwpat</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729057752</pqid></control><display><type>article</type><title>N–Ar–He–CO2 Systematics Combined with H2O, Cl, K Abundances in MORB Glasses Demonstrate Interaction of Magmatic and Hydrothermal Systems: a Case for MAR at 16°07′–17°11′ N</title><source>SpringerLink Journals - AutoHoldings</source><creator>Buikin, A. I. ; Silantyev, S. A. ; Verchovsky, A. B.</creator><creatorcontrib>Buikin, A. I. ; Silantyev, S. A. ; Verchovsky, A. B.</creatorcontrib><description>Here we present data on nitrogen and argon isotopic compositions and He–Ar–N–C(CO 2 ) elemental ratios obtained during stepwise crushing of fresh basaltic glasses of the N-MORB family from Mid-Atlantic ridge rift valley at 16°07′–17°11′ N. The bulk nitrogen isotopic composition in the samples varies from δ 15 N (total) = –5.2 ± 0.2‰ (i.e., typical for MORB glasses) to δ 15 N (total) = +4.6 ± 0.3‰ (pointing to the presence of organic nitrogen). The δ 15 N variations in the crushing steps are wider and range from –13.8 to +8.3‰. The 40 Ar/ 36 Ar ratios in the crushing steps vary from the value close to that in the atmosphere (~296) up to 11 100 ± 590 (the bulk values cover a range from 355 ± 11 to 2799 ± 159). Correlations between argon and nitrogen isotopic and elemental ratios imply mixing between an N-MORB type mantle component and a surface-derived component enriched in 15 N. Carbon (CO 2 )—nitrogen systematic suggests that the most plausible source for isotopically heavy nitrogen is the organic matter brought into the fluid source. Strong relationships between Ar and N isotopic compositions and Cl, H 2 O, and K, as well as Ar–N 2 , N 2 –CO 2 and Ar–He–CO 2 systematics, indicate that melt degassing and contamination with atmospheric Аr and organic nitrogen are the two dominant processes responsible for elemental and isotopic variation. The contamination of magmatic melts with surface related noble gases and organic nitrogen occurred through their interaction with high salinity hydrothermal brines. We propose that this contamination mechanism may be universal and largely responsible for the observed variations in the isotopic composition for a number of volatile elements in MORB glasses. However larger set of samples from the hydrothermal fields’ related areas has to be studied for better understanding how common is the established contamination mechanism.</description><identifier>ISSN: 0016-7029</identifier><identifier>EISSN: 1556-1968</identifier><identifier>DOI: 10.1134/S0016702922110027</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Argon ; Brines ; Carbon dioxide ; Chemical composition ; Composition ; Contamination ; Crushing ; Degassing ; Earth and Environmental Science ; Earth Sciences ; Gases ; Geochemistry ; Helium ; Hydrothermal fields ; Hydrothermal systems ; Isotopes ; Mid-ocean ridges ; Nitrogen ; Nitrogen isotopes ; Organic matter ; Organic nitrogen ; Rare gases ; Ratios ; Rift valleys ; Systematics ; Variation</subject><ispartof>Geochemistry international, 2022, Vol.60 (11), p.1068-1086</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 0016-7029, Geochemistry International, 2022, Vol. 60, No. 11, pp. 1068–1086. © Pleiades Publishing, Ltd., 2022. ISSN 0016-7029, Geochemistry International, 2022. © Pleiades Publishing, Ltd., 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1617-7471bd6e84ee15aee049d79418245fccfa101a41f8b0da57a6b540d555488f363</citedby><cites>FETCH-LOGICAL-c1617-7471bd6e84ee15aee049d79418245fccfa101a41f8b0da57a6b540d555488f363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016702922110027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016702922110027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Buikin, A. I.</creatorcontrib><creatorcontrib>Silantyev, S. A.</creatorcontrib><creatorcontrib>Verchovsky, A. B.</creatorcontrib><title>N–Ar–He–CO2 Systematics Combined with H2O, Cl, K Abundances in MORB Glasses Demonstrate Interaction of Magmatic and Hydrothermal Systems: a Case for MAR at 16°07′–17°11′ N</title><title>Geochemistry international</title><addtitle>Geochem. Int</addtitle><description>Here we present data on nitrogen and argon isotopic compositions and He–Ar–N–C(CO 2 ) elemental ratios obtained during stepwise crushing of fresh basaltic glasses of the N-MORB family from Mid-Atlantic ridge rift valley at 16°07′–17°11′ N. The bulk nitrogen isotopic composition in the samples varies from δ 15 N (total) = –5.2 ± 0.2‰ (i.e., typical for MORB glasses) to δ 15 N (total) = +4.6 ± 0.3‰ (pointing to the presence of organic nitrogen). The δ 15 N variations in the crushing steps are wider and range from –13.8 to +8.3‰. The 40 Ar/ 36 Ar ratios in the crushing steps vary from the value close to that in the atmosphere (~296) up to 11 100 ± 590 (the bulk values cover a range from 355 ± 11 to 2799 ± 159). Correlations between argon and nitrogen isotopic and elemental ratios imply mixing between an N-MORB type mantle component and a surface-derived component enriched in 15 N. Carbon (CO 2 )—nitrogen systematic suggests that the most plausible source for isotopically heavy nitrogen is the organic matter brought into the fluid source. Strong relationships between Ar and N isotopic compositions and Cl, H 2 O, and K, as well as Ar–N 2 , N 2 –CO 2 and Ar–He–CO 2 systematics, indicate that melt degassing and contamination with atmospheric Аr and organic nitrogen are the two dominant processes responsible for elemental and isotopic variation. The contamination of magmatic melts with surface related noble gases and organic nitrogen occurred through their interaction with high salinity hydrothermal brines. We propose that this contamination mechanism may be universal and largely responsible for the observed variations in the isotopic composition for a number of volatile elements in MORB glasses. However larger set of samples from the hydrothermal fields’ related areas has to be studied for better understanding how common is the established contamination mechanism.</description><subject>Argon</subject><subject>Brines</subject><subject>Carbon dioxide</subject><subject>Chemical composition</subject><subject>Composition</subject><subject>Contamination</subject><subject>Crushing</subject><subject>Degassing</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Gases</subject><subject>Geochemistry</subject><subject>Helium</subject><subject>Hydrothermal fields</subject><subject>Hydrothermal systems</subject><subject>Isotopes</subject><subject>Mid-ocean ridges</subject><subject>Nitrogen</subject><subject>Nitrogen isotopes</subject><subject>Organic matter</subject><subject>Organic nitrogen</subject><subject>Rare gases</subject><subject>Ratios</subject><subject>Rift valleys</subject><subject>Systematics</subject><subject>Variation</subject><issn>0016-7029</issn><issn>1556-1968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1Uc1u1DAQthBILKUP0NtIXBvweO044bak0K3odqX-nCMnmbSpNnaxvUJ76zvwIhU3rn2UPglethIHxGV-NN_PSB9jB8jfI07lhwvOMddclEIgci70CzZBpfIMy7x4ySbbc7a9v2ZvQrjlXMppqSfs19nT_Y-ZT2VOqVRLARebEGk0cWgDVG5sBksdfB_iDczF8hCq1SF8hVmztp2xLQUYLCyW55_geGVCSPsRjc6G6E0kOLGRvGnj4Cy4Hhbm-o8wGNvBfNN5F2_Ij2b1bBo-goHKBILeeVjMzsFEwPzxgeun-5_pP9SPD4hphrO37FVvVoH2n_seu_ry-bKaZ6fL45Nqdpq1mKPOtNTYdDkVkgiVIeKy7HQpsRBS9W3bG-RoJPZFwzujtMkbJXmnlJJF0U_z6R57t9O98-7bmkKsb93a22RZCy1KrrRWIqFwh2q9C8FTX9_5YTR-UyOvtwnV_ySUOGLHCQlrr8n_Vf4_6TfOwpat</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Buikin, A. I.</creator><creator>Silantyev, S. A.</creator><creator>Verchovsky, A. B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>2022</creationdate><title>N–Ar–He–CO2 Systematics Combined with H2O, Cl, K Abundances in MORB Glasses Demonstrate Interaction of Magmatic and Hydrothermal Systems: a Case for MAR at 16°07′–17°11′ N</title><author>Buikin, A. I. ; Silantyev, S. A. ; Verchovsky, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1617-7471bd6e84ee15aee049d79418245fccfa101a41f8b0da57a6b540d555488f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Argon</topic><topic>Brines</topic><topic>Carbon dioxide</topic><topic>Chemical composition</topic><topic>Composition</topic><topic>Contamination</topic><topic>Crushing</topic><topic>Degassing</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Gases</topic><topic>Geochemistry</topic><topic>Helium</topic><topic>Hydrothermal fields</topic><topic>Hydrothermal systems</topic><topic>Isotopes</topic><topic>Mid-ocean ridges</topic><topic>Nitrogen</topic><topic>Nitrogen isotopes</topic><topic>Organic matter</topic><topic>Organic nitrogen</topic><topic>Rare gases</topic><topic>Ratios</topic><topic>Rift valleys</topic><topic>Systematics</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buikin, A. I.</creatorcontrib><creatorcontrib>Silantyev, S. A.</creatorcontrib><creatorcontrib>Verchovsky, A. B.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geochemistry international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buikin, A. I.</au><au>Silantyev, S. A.</au><au>Verchovsky, A. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N–Ar–He–CO2 Systematics Combined with H2O, Cl, K Abundances in MORB Glasses Demonstrate Interaction of Magmatic and Hydrothermal Systems: a Case for MAR at 16°07′–17°11′ N</atitle><jtitle>Geochemistry international</jtitle><stitle>Geochem. Int</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><issue>11</issue><spage>1068</spage><epage>1086</epage><pages>1068-1086</pages><issn>0016-7029</issn><eissn>1556-1968</eissn><abstract>Here we present data on nitrogen and argon isotopic compositions and He–Ar–N–C(CO 2 ) elemental ratios obtained during stepwise crushing of fresh basaltic glasses of the N-MORB family from Mid-Atlantic ridge rift valley at 16°07′–17°11′ N. The bulk nitrogen isotopic composition in the samples varies from δ 15 N (total) = –5.2 ± 0.2‰ (i.e., typical for MORB glasses) to δ 15 N (total) = +4.6 ± 0.3‰ (pointing to the presence of organic nitrogen). The δ 15 N variations in the crushing steps are wider and range from –13.8 to +8.3‰. The 40 Ar/ 36 Ar ratios in the crushing steps vary from the value close to that in the atmosphere (~296) up to 11 100 ± 590 (the bulk values cover a range from 355 ± 11 to 2799 ± 159). Correlations between argon and nitrogen isotopic and elemental ratios imply mixing between an N-MORB type mantle component and a surface-derived component enriched in 15 N. Carbon (CO 2 )—nitrogen systematic suggests that the most plausible source for isotopically heavy nitrogen is the organic matter brought into the fluid source. Strong relationships between Ar and N isotopic compositions and Cl, H 2 O, and K, as well as Ar–N 2 , N 2 –CO 2 and Ar–He–CO 2 systematics, indicate that melt degassing and contamination with atmospheric Аr and organic nitrogen are the two dominant processes responsible for elemental and isotopic variation. The contamination of magmatic melts with surface related noble gases and organic nitrogen occurred through their interaction with high salinity hydrothermal brines. We propose that this contamination mechanism may be universal and largely responsible for the observed variations in the isotopic composition for a number of volatile elements in MORB glasses. However larger set of samples from the hydrothermal fields’ related areas has to be studied for better understanding how common is the established contamination mechanism.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016702922110027</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7029
ispartof Geochemistry international, 2022, Vol.60 (11), p.1068-1086
issn 0016-7029
1556-1968
language eng
recordid cdi_proquest_journals_2729057752
source SpringerLink Journals - AutoHoldings
subjects Argon
Brines
Carbon dioxide
Chemical composition
Composition
Contamination
Crushing
Degassing
Earth and Environmental Science
Earth Sciences
Gases
Geochemistry
Helium
Hydrothermal fields
Hydrothermal systems
Isotopes
Mid-ocean ridges
Nitrogen
Nitrogen isotopes
Organic matter
Organic nitrogen
Rare gases
Ratios
Rift valleys
Systematics
Variation
title N–Ar–He–CO2 Systematics Combined with H2O, Cl, K Abundances in MORB Glasses Demonstrate Interaction of Magmatic and Hydrothermal Systems: a Case for MAR at 16°07′–17°11′ N
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%E2%80%93Ar%E2%80%93He%E2%80%93CO2%20Systematics%20Combined%20with%20H2O,%20Cl,%20K%20Abundances%20in%20MORB%20Glasses%20Demonstrate%20Interaction%20of%20Magmatic%20and%20Hydrothermal%20Systems:%20a%20Case%20for%20MAR%20at%2016%C2%B007%E2%80%B2%E2%80%9317%C2%B011%E2%80%B2%20N&rft.jtitle=Geochemistry%20international&rft.au=Buikin,%20A.%20I.&rft.date=2022&rft.volume=60&rft.issue=11&rft.spage=1068&rft.epage=1086&rft.pages=1068-1086&rft.issn=0016-7029&rft.eissn=1556-1968&rft_id=info:doi/10.1134/S0016702922110027&rft_dat=%3Cproquest_cross%3E2729057752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729057752&rft_id=info:pmid/&rfr_iscdi=true