A Legendre spectral-finite difference method for Caputo–Fabrizio time-fractional distributed-order diffusion equation

In this paper, we introduce a hybrid method based on a finite difference method and a spectral method for solving the multi-term time-fractional diffusion equations (TFDEs) based on Caputo–Fabrizio fractional operator. We apply a finite difference scheme for discretizing the time derivatives and con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Sciences 2022-12, Vol.16 (4), p.417-430
Hauptverfasser: Fardi, M., Alidousti, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a hybrid method based on a finite difference method and a spectral method for solving the multi-term time-fractional diffusion equations (TFDEs) based on Caputo–Fabrizio fractional operator. We apply a finite difference scheme for discretizing the time derivatives and consider a Legendre-spectral approximation in space discretization to semi-discrete problem. It is known that the spectral method has been an efficient tool for computing numerical solutions of differential equations because of its high-order accuracy. We discuss the convergence of the proposed method in discrete L 2 -norm. Furthermore, we extend the multi-term TFDE to the distributed order and analyze the method for the considered equation. In the end, we confirm the proven theoretical results with the help of some numerical examples.
ISSN:2008-1359
2251-7456
DOI:10.1007/s40096-021-00430-4