(\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees

Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Jespersen, Christian Kragh, Cranmer, Miles, Melchior, Peter, Ho, Shirley, Somerville, Rachel S, Gabrielpillai, Austen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jespersen, Christian Kragh
Cranmer, Miles
Melchior, Peter
Ho, Shirley
Somerville, Rachel S
Gabrielpillai, Austen
description Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require significant computation times, representing a barrier to many applications. Graph Neural Networks (GNNs) have recently proven to be the natural choice for learning physical relations. Among the most inherently graph-like structures found in astrophysics are the dark matter merger trees that encode the evolution of dark matter halos. In this paper we introduce a new, graph-based emulator framework, \(\texttt{Mangrove}\), and show that it emulates the galactic stellar mass, cold gas mass and metallicity, instantaneous and time-averaged star formation rate, and black hole mass -- as predicted by a SAM -- with root mean squared error up to two times lower than other methods across a \((75 Mpc/h)^3\) simulation box in 40 seconds, 4 orders of magnitude faster than the SAM. We show that \(\texttt{Mangrove}\) allows for quantification of the dependence of galaxy properties on merger history. We compare our results to the current state of the art in the field and show significant improvements for all target properties. \(\texttt{Mangrove}\) is publicly available.
doi_str_mv 10.48550/arxiv.2210.13473
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2728716779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728716779</sourcerecordid><originalsourceid>FETCH-proquest_journals_27287167793</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgKNoPcAu46GBNb1pTHRUfgwUHR6FkuC0VbepNKhXx3-3gBzgdOOcwNgqEH8ZRJOaamuLpA7QikKGSHdYHKYNZHAL0mGftVQgBCwVRJPtsPbk4bJxz70SXOZknfi7TFT-iprIoc77XN928-IlMheQKtDwjc-cJUo7Ez4Roh6yb6ZtF78cBG--2581hVpF51GhdejU1lW1KQUGsgoVSS_nf9QWrakAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728716779</pqid></control><display><type>article</type><title>(\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees</title><source>Free E- Journals</source><creator>Jespersen, Christian Kragh ; Cranmer, Miles ; Melchior, Peter ; Ho, Shirley ; Somerville, Rachel S ; Gabrielpillai, Austen</creator><creatorcontrib>Jespersen, Christian Kragh ; Cranmer, Miles ; Melchior, Peter ; Ho, Shirley ; Somerville, Rachel S ; Gabrielpillai, Austen</creatorcontrib><description>Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require significant computation times, representing a barrier to many applications. Graph Neural Networks (GNNs) have recently proven to be the natural choice for learning physical relations. Among the most inherently graph-like structures found in astrophysics are the dark matter merger trees that encode the evolution of dark matter halos. In this paper we introduce a new, graph-based emulator framework, \(\texttt{Mangrove}\), and show that it emulates the galactic stellar mass, cold gas mass and metallicity, instantaneous and time-averaged star formation rate, and black hole mass -- as predicted by a SAM -- with root mean squared error up to two times lower than other methods across a \((75 Mpc/h)^3\) simulation box in 40 seconds, 4 orders of magnitude faster than the SAM. We show that \(\texttt{Mangrove}\) allows for quantification of the dependence of galaxy properties on merger history. We compare our results to the current state of the art in the field and show significant improvements for all target properties. \(\texttt{Mangrove}\) is publicly available.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2210.13473</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astronomical models ; Astrophysics ; Cold gas ; Dark matter ; Galactic halos ; Galaxies ; Graph neural networks ; Graphical representations ; Learning ; Metallicity ; Star &amp; galaxy formation ; Star formation rate ; Stellar mass</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Jespersen, Christian Kragh</creatorcontrib><creatorcontrib>Cranmer, Miles</creatorcontrib><creatorcontrib>Melchior, Peter</creatorcontrib><creatorcontrib>Ho, Shirley</creatorcontrib><creatorcontrib>Somerville, Rachel S</creatorcontrib><creatorcontrib>Gabrielpillai, Austen</creatorcontrib><title>(\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees</title><title>arXiv.org</title><description>Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require significant computation times, representing a barrier to many applications. Graph Neural Networks (GNNs) have recently proven to be the natural choice for learning physical relations. Among the most inherently graph-like structures found in astrophysics are the dark matter merger trees that encode the evolution of dark matter halos. In this paper we introduce a new, graph-based emulator framework, \(\texttt{Mangrove}\), and show that it emulates the galactic stellar mass, cold gas mass and metallicity, instantaneous and time-averaged star formation rate, and black hole mass -- as predicted by a SAM -- with root mean squared error up to two times lower than other methods across a \((75 Mpc/h)^3\) simulation box in 40 seconds, 4 orders of magnitude faster than the SAM. We show that \(\texttt{Mangrove}\) allows for quantification of the dependence of galaxy properties on merger history. We compare our results to the current state of the art in the field and show significant improvements for all target properties. \(\texttt{Mangrove}\) is publicly available.</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Cold gas</subject><subject>Dark matter</subject><subject>Galactic halos</subject><subject>Galaxies</subject><subject>Graph neural networks</subject><subject>Graphical representations</subject><subject>Learning</subject><subject>Metallicity</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation rate</subject><subject>Stellar mass</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirsKwjAUQIMgKNoPcAu46GBNb1pTHRUfgwUHR6FkuC0VbepNKhXx3-3gBzgdOOcwNgqEH8ZRJOaamuLpA7QikKGSHdYHKYNZHAL0mGftVQgBCwVRJPtsPbk4bJxz70SXOZknfi7TFT-iprIoc77XN928-IlMheQKtDwjc-cJUo7Ez4Roh6yb6ZtF78cBG--2581hVpF51GhdejU1lW1KQUGsgoVSS_nf9QWrakAk</recordid><startdate>20221024</startdate><enddate>20221024</enddate><creator>Jespersen, Christian Kragh</creator><creator>Cranmer, Miles</creator><creator>Melchior, Peter</creator><creator>Ho, Shirley</creator><creator>Somerville, Rachel S</creator><creator>Gabrielpillai, Austen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20221024</creationdate><title>(\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees</title><author>Jespersen, Christian Kragh ; Cranmer, Miles ; Melchior, Peter ; Ho, Shirley ; Somerville, Rachel S ; Gabrielpillai, Austen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27287167793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Cold gas</topic><topic>Dark matter</topic><topic>Galactic halos</topic><topic>Galaxies</topic><topic>Graph neural networks</topic><topic>Graphical representations</topic><topic>Learning</topic><topic>Metallicity</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation rate</topic><topic>Stellar mass</topic><toplevel>online_resources</toplevel><creatorcontrib>Jespersen, Christian Kragh</creatorcontrib><creatorcontrib>Cranmer, Miles</creatorcontrib><creatorcontrib>Melchior, Peter</creatorcontrib><creatorcontrib>Ho, Shirley</creatorcontrib><creatorcontrib>Somerville, Rachel S</creatorcontrib><creatorcontrib>Gabrielpillai, Austen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jespersen, Christian Kragh</au><au>Cranmer, Miles</au><au>Melchior, Peter</au><au>Ho, Shirley</au><au>Somerville, Rachel S</au><au>Gabrielpillai, Austen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees</atitle><jtitle>arXiv.org</jtitle><date>2022-10-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require significant computation times, representing a barrier to many applications. Graph Neural Networks (GNNs) have recently proven to be the natural choice for learning physical relations. Among the most inherently graph-like structures found in astrophysics are the dark matter merger trees that encode the evolution of dark matter halos. In this paper we introduce a new, graph-based emulator framework, \(\texttt{Mangrove}\), and show that it emulates the galactic stellar mass, cold gas mass and metallicity, instantaneous and time-averaged star formation rate, and black hole mass -- as predicted by a SAM -- with root mean squared error up to two times lower than other methods across a \((75 Mpc/h)^3\) simulation box in 40 seconds, 4 orders of magnitude faster than the SAM. We show that \(\texttt{Mangrove}\) allows for quantification of the dependence of galaxy properties on merger history. We compare our results to the current state of the art in the field and show significant improvements for all target properties. \(\texttt{Mangrove}\) is publicly available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2210.13473</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2728716779
source Free E- Journals
subjects Astronomical models
Astrophysics
Cold gas
Dark matter
Galactic halos
Galaxies
Graph neural networks
Graphical representations
Learning
Metallicity
Star & galaxy formation
Star formation rate
Stellar mass
title (\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(%5Ctexttt%7BMangrove%7D%5C):%20Learning%20Galaxy%20Properties%20from%20Merger%20Trees&rft.jtitle=arXiv.org&rft.au=Jespersen,%20Christian%20Kragh&rft.date=2022-10-24&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2210.13473&rft_dat=%3Cproquest%3E2728716779%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728716779&rft_id=info:pmid/&rfr_iscdi=true