(\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees
Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require si...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jespersen, Christian Kragh Cranmer, Miles Melchior, Peter Ho, Shirley Somerville, Rachel S Gabrielpillai, Austen |
description | Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require significant computation times, representing a barrier to many applications. Graph Neural Networks (GNNs) have recently proven to be the natural choice for learning physical relations. Among the most inherently graph-like structures found in astrophysics are the dark matter merger trees that encode the evolution of dark matter halos. In this paper we introduce a new, graph-based emulator framework, \(\texttt{Mangrove}\), and show that it emulates the galactic stellar mass, cold gas mass and metallicity, instantaneous and time-averaged star formation rate, and black hole mass -- as predicted by a SAM -- with root mean squared error up to two times lower than other methods across a \((75 Mpc/h)^3\) simulation box in 40 seconds, 4 orders of magnitude faster than the SAM. We show that \(\texttt{Mangrove}\) allows for quantification of the dependence of galaxy properties on merger history. We compare our results to the current state of the art in the field and show significant improvements for all target properties. \(\texttt{Mangrove}\) is publicly available. |
doi_str_mv | 10.48550/arxiv.2210.13473 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2728716779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728716779</sourcerecordid><originalsourceid>FETCH-proquest_journals_27287167793</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgKNoPcAu46GBNb1pTHRUfgwUHR6FkuC0VbepNKhXx3-3gBzgdOOcwNgqEH8ZRJOaamuLpA7QikKGSHdYHKYNZHAL0mGftVQgBCwVRJPtsPbk4bJxz70SXOZknfi7TFT-iprIoc77XN928-IlMheQKtDwjc-cJUo7Ez4Roh6yb6ZtF78cBG--2581hVpF51GhdejU1lW1KQUGsgoVSS_nf9QWrakAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728716779</pqid></control><display><type>article</type><title>(\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees</title><source>Free E- Journals</source><creator>Jespersen, Christian Kragh ; Cranmer, Miles ; Melchior, Peter ; Ho, Shirley ; Somerville, Rachel S ; Gabrielpillai, Austen</creator><creatorcontrib>Jespersen, Christian Kragh ; Cranmer, Miles ; Melchior, Peter ; Ho, Shirley ; Somerville, Rachel S ; Gabrielpillai, Austen</creatorcontrib><description>Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require significant computation times, representing a barrier to many applications. Graph Neural Networks (GNNs) have recently proven to be the natural choice for learning physical relations. Among the most inherently graph-like structures found in astrophysics are the dark matter merger trees that encode the evolution of dark matter halos. In this paper we introduce a new, graph-based emulator framework, \(\texttt{Mangrove}\), and show that it emulates the galactic stellar mass, cold gas mass and metallicity, instantaneous and time-averaged star formation rate, and black hole mass -- as predicted by a SAM -- with root mean squared error up to two times lower than other methods across a \((75 Mpc/h)^3\) simulation box in 40 seconds, 4 orders of magnitude faster than the SAM. We show that \(\texttt{Mangrove}\) allows for quantification of the dependence of galaxy properties on merger history. We compare our results to the current state of the art in the field and show significant improvements for all target properties. \(\texttt{Mangrove}\) is publicly available.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2210.13473</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astronomical models ; Astrophysics ; Cold gas ; Dark matter ; Galactic halos ; Galaxies ; Graph neural networks ; Graphical representations ; Learning ; Metallicity ; Star & galaxy formation ; Star formation rate ; Stellar mass</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Jespersen, Christian Kragh</creatorcontrib><creatorcontrib>Cranmer, Miles</creatorcontrib><creatorcontrib>Melchior, Peter</creatorcontrib><creatorcontrib>Ho, Shirley</creatorcontrib><creatorcontrib>Somerville, Rachel S</creatorcontrib><creatorcontrib>Gabrielpillai, Austen</creatorcontrib><title>(\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees</title><title>arXiv.org</title><description>Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require significant computation times, representing a barrier to many applications. Graph Neural Networks (GNNs) have recently proven to be the natural choice for learning physical relations. Among the most inherently graph-like structures found in astrophysics are the dark matter merger trees that encode the evolution of dark matter halos. In this paper we introduce a new, graph-based emulator framework, \(\texttt{Mangrove}\), and show that it emulates the galactic stellar mass, cold gas mass and metallicity, instantaneous and time-averaged star formation rate, and black hole mass -- as predicted by a SAM -- with root mean squared error up to two times lower than other methods across a \((75 Mpc/h)^3\) simulation box in 40 seconds, 4 orders of magnitude faster than the SAM. We show that \(\texttt{Mangrove}\) allows for quantification of the dependence of galaxy properties on merger history. We compare our results to the current state of the art in the field and show significant improvements for all target properties. \(\texttt{Mangrove}\) is publicly available.</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Cold gas</subject><subject>Dark matter</subject><subject>Galactic halos</subject><subject>Galaxies</subject><subject>Graph neural networks</subject><subject>Graphical representations</subject><subject>Learning</subject><subject>Metallicity</subject><subject>Star & galaxy formation</subject><subject>Star formation rate</subject><subject>Stellar mass</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirsKwjAUQIMgKNoPcAu46GBNb1pTHRUfgwUHR6FkuC0VbepNKhXx3-3gBzgdOOcwNgqEH8ZRJOaamuLpA7QikKGSHdYHKYNZHAL0mGftVQgBCwVRJPtsPbk4bJxz70SXOZknfi7TFT-iprIoc77XN928-IlMheQKtDwjc-cJUo7Ez4Roh6yb6ZtF78cBG--2581hVpF51GhdejU1lW1KQUGsgoVSS_nf9QWrakAk</recordid><startdate>20221024</startdate><enddate>20221024</enddate><creator>Jespersen, Christian Kragh</creator><creator>Cranmer, Miles</creator><creator>Melchior, Peter</creator><creator>Ho, Shirley</creator><creator>Somerville, Rachel S</creator><creator>Gabrielpillai, Austen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20221024</creationdate><title>(\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees</title><author>Jespersen, Christian Kragh ; Cranmer, Miles ; Melchior, Peter ; Ho, Shirley ; Somerville, Rachel S ; Gabrielpillai, Austen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27287167793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Cold gas</topic><topic>Dark matter</topic><topic>Galactic halos</topic><topic>Galaxies</topic><topic>Graph neural networks</topic><topic>Graphical representations</topic><topic>Learning</topic><topic>Metallicity</topic><topic>Star & galaxy formation</topic><topic>Star formation rate</topic><topic>Stellar mass</topic><toplevel>online_resources</toplevel><creatorcontrib>Jespersen, Christian Kragh</creatorcontrib><creatorcontrib>Cranmer, Miles</creatorcontrib><creatorcontrib>Melchior, Peter</creatorcontrib><creatorcontrib>Ho, Shirley</creatorcontrib><creatorcontrib>Somerville, Rachel S</creatorcontrib><creatorcontrib>Gabrielpillai, Austen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jespersen, Christian Kragh</au><au>Cranmer, Miles</au><au>Melchior, Peter</au><au>Ho, Shirley</au><au>Somerville, Rachel S</au><au>Gabrielpillai, Austen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees</atitle><jtitle>arXiv.org</jtitle><date>2022-10-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require significant computation times, representing a barrier to many applications. Graph Neural Networks (GNNs) have recently proven to be the natural choice for learning physical relations. Among the most inherently graph-like structures found in astrophysics are the dark matter merger trees that encode the evolution of dark matter halos. In this paper we introduce a new, graph-based emulator framework, \(\texttt{Mangrove}\), and show that it emulates the galactic stellar mass, cold gas mass and metallicity, instantaneous and time-averaged star formation rate, and black hole mass -- as predicted by a SAM -- with root mean squared error up to two times lower than other methods across a \((75 Mpc/h)^3\) simulation box in 40 seconds, 4 orders of magnitude faster than the SAM. We show that \(\texttt{Mangrove}\) allows for quantification of the dependence of galaxy properties on merger history. We compare our results to the current state of the art in the field and show significant improvements for all target properties. \(\texttt{Mangrove}\) is publicly available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2210.13473</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2728716779 |
source | Free E- Journals |
subjects | Astronomical models Astrophysics Cold gas Dark matter Galactic halos Galaxies Graph neural networks Graphical representations Learning Metallicity Star & galaxy formation Star formation rate Stellar mass |
title | (\texttt{Mangrove}\): Learning Galaxy Properties from Merger Trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(%5Ctexttt%7BMangrove%7D%5C):%20Learning%20Galaxy%20Properties%20from%20Merger%20Trees&rft.jtitle=arXiv.org&rft.au=Jespersen,%20Christian%20Kragh&rft.date=2022-10-24&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2210.13473&rft_dat=%3Cproquest%3E2728716779%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728716779&rft_id=info:pmid/&rfr_iscdi=true |