Hazard Assessment and Modeling of Erosion and Sea Level Rise under Global Climate Change Conditions for Coastal City Management
AbstractSea-level rise in response to climate change and global warming severely impacts coastal cities through increased soil erosion and other hazards. Therefore, simulating threats in coastal locations is critical for coastal city management and planning. The Nonlinear Autoregressive Exogenous-Ne...
Gespeichert in:
Veröffentlicht in: | Natural hazards review 2023-02, Vol.24 (1) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Natural hazards review |
container_volume | 24 |
creator | Bagheri, Milad Ibrahim, Zelina Z. Mansor, Shattri Abd Manaf, Latifah Akhir, M. F. Talaat, W. I. A. W. Wolf, Isabelle D. |
description | AbstractSea-level rise in response to climate change and global warming severely impacts coastal cities through increased soil erosion and other hazards. Therefore, simulating threats in coastal locations is critical for coastal city management and planning. The Nonlinear Autoregressive Exogenous-Neural Network (NARX-NN) was used in conjunction with the Bruun model and GIS methods to estimate the rate of sea-level rise, develop a coastal erosion model and coastal hazards maps, and simulate a sea-level increase with a maximum speed of 79.26 mm/year, and an average of about 25.34 mm/year, with a 1.48 m/year average erosion rate simulated from 2013 to 2020 along Merang kechil to Kuala Marang in Terengganu state coastal areas. According to the Bruun model, the areas most vulnerable to shoreline erosion are Kuala Nerus, Pendagan Buluh, and Kuala Ibai. Batu Rakit (Reach 1) has the highest rate of coastal erosion, at 28.16%, compared to 16.5 percent in Kuala Nerus (Reach 2) and 19.1% in Pengadang Buluh (Reach 3). The findings of this study might be utilized to build new coastal hazard erosion maps in a GIS framework, which could then be used as part of Malaysia’s East Coast zone vulnerability assessment. The findings may also aid in the prioritization of conservation efforts in afflicted areas or the decision to adapt to the effects of coastal erosion. This article presents a methodological framework and an erosion management prioritization system to help coastal managers, planners, and developers identify hazardous zones and improve coastal management plans using geospatial models. |
doi_str_mv | 10.1061/(ASCE)NH.1527-6996.0000593 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728715054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728715054</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-53f3b66f793e0ff432910a4f20bc058082c2f1f4bc63554a7039427da886cc543</originalsourceid><addsrcrecordid>eNp1kF1PwjAUhhejiYj-h0Zv9GLYj7XdvCMLMhPARPS66bYWR0aL7TDBG_-6GyBeeW7OR973nJwnCK4RHCDI0P3tcJ6O7mbZAFHMQ5YkbADboAk5CXrH2emxjuPz4ML7JYQo4pD2gu9MfklXgqH3yvuVMg2QpgRTW6q6MgtgNRg56ytrdvO5kmCiPlUNXiqvwMaUyoFxbXNZg7SuVrJRIH2XZtEma8qqaY0eaOvaVvqmU1XNFkylkQvVXbsMzrSsvbo65H7w9jh6TbNw8jx-SoeTUBLCm5ASTXLGNE-IglpHBCcIykhjmBeQxjDGBdZIR3nBCKWR5JAkEealjGNWFDQi_eBmv3ft7MdG-UYs7caZ9qTAHMccUbhTPexVRfuzd0qLtWufcluBoOiAC9EBF7NMdEBFB1ccgLdmtjdLX6i_9b_O_40_L5GEhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728715054</pqid></control><display><type>article</type><title>Hazard Assessment and Modeling of Erosion and Sea Level Rise under Global Climate Change Conditions for Coastal City Management</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Bagheri, Milad ; Ibrahim, Zelina Z. ; Mansor, Shattri ; Abd Manaf, Latifah ; Akhir, M. F. ; Talaat, W. I. A. W. ; Wolf, Isabelle D.</creator><creatorcontrib>Bagheri, Milad ; Ibrahim, Zelina Z. ; Mansor, Shattri ; Abd Manaf, Latifah ; Akhir, M. F. ; Talaat, W. I. A. W. ; Wolf, Isabelle D.</creatorcontrib><description>AbstractSea-level rise in response to climate change and global warming severely impacts coastal cities through increased soil erosion and other hazards. Therefore, simulating threats in coastal locations is critical for coastal city management and planning. The Nonlinear Autoregressive Exogenous-Neural Network (NARX-NN) was used in conjunction with the Bruun model and GIS methods to estimate the rate of sea-level rise, develop a coastal erosion model and coastal hazards maps, and simulate a sea-level increase with a maximum speed of 79.26 mm/year, and an average of about 25.34 mm/year, with a 1.48 m/year average erosion rate simulated from 2013 to 2020 along Merang kechil to Kuala Marang in Terengganu state coastal areas. According to the Bruun model, the areas most vulnerable to shoreline erosion are Kuala Nerus, Pendagan Buluh, and Kuala Ibai. Batu Rakit (Reach 1) has the highest rate of coastal erosion, at 28.16%, compared to 16.5 percent in Kuala Nerus (Reach 2) and 19.1% in Pengadang Buluh (Reach 3). The findings of this study might be utilized to build new coastal hazard erosion maps in a GIS framework, which could then be used as part of Malaysia’s East Coast zone vulnerability assessment. The findings may also aid in the prioritization of conservation efforts in afflicted areas or the decision to adapt to the effects of coastal erosion. This article presents a methodological framework and an erosion management prioritization system to help coastal managers, planners, and developers identify hazardous zones and improve coastal management plans using geospatial models.</description><identifier>ISSN: 1527-6988</identifier><identifier>EISSN: 1527-6996</identifier><identifier>DOI: 10.1061/(ASCE)NH.1527-6996.0000593</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Climate change ; Coastal effects ; Coastal erosion ; Coastal hazards ; Coastal management ; Coastal zone ; Coastal zone management ; Conservation ; Erosion models ; Erosion rates ; Forestry ; Geographic information systems ; Geographical information systems ; Global climate ; Global warming ; Hazard assessment ; Hazards ; Modelling ; Neural networks ; Sea level changes ; Sea level rise ; Simulation ; Soil erosion ; Technical Papers ; Vulnerability</subject><ispartof>Natural hazards review, 2023-02, Vol.24 (1)</ispartof><rights>2022 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-53f3b66f793e0ff432910a4f20bc058082c2f1f4bc63554a7039427da886cc543</citedby><cites>FETCH-LOGICAL-a337t-53f3b66f793e0ff432910a4f20bc058082c2f1f4bc63554a7039427da886cc543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)NH.1527-6996.0000593$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)NH.1527-6996.0000593$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75936,75944</link.rule.ids></links><search><creatorcontrib>Bagheri, Milad</creatorcontrib><creatorcontrib>Ibrahim, Zelina Z.</creatorcontrib><creatorcontrib>Mansor, Shattri</creatorcontrib><creatorcontrib>Abd Manaf, Latifah</creatorcontrib><creatorcontrib>Akhir, M. F.</creatorcontrib><creatorcontrib>Talaat, W. I. A. W.</creatorcontrib><creatorcontrib>Wolf, Isabelle D.</creatorcontrib><title>Hazard Assessment and Modeling of Erosion and Sea Level Rise under Global Climate Change Conditions for Coastal City Management</title><title>Natural hazards review</title><description>AbstractSea-level rise in response to climate change and global warming severely impacts coastal cities through increased soil erosion and other hazards. Therefore, simulating threats in coastal locations is critical for coastal city management and planning. The Nonlinear Autoregressive Exogenous-Neural Network (NARX-NN) was used in conjunction with the Bruun model and GIS methods to estimate the rate of sea-level rise, develop a coastal erosion model and coastal hazards maps, and simulate a sea-level increase with a maximum speed of 79.26 mm/year, and an average of about 25.34 mm/year, with a 1.48 m/year average erosion rate simulated from 2013 to 2020 along Merang kechil to Kuala Marang in Terengganu state coastal areas. According to the Bruun model, the areas most vulnerable to shoreline erosion are Kuala Nerus, Pendagan Buluh, and Kuala Ibai. Batu Rakit (Reach 1) has the highest rate of coastal erosion, at 28.16%, compared to 16.5 percent in Kuala Nerus (Reach 2) and 19.1% in Pengadang Buluh (Reach 3). The findings of this study might be utilized to build new coastal hazard erosion maps in a GIS framework, which could then be used as part of Malaysia’s East Coast zone vulnerability assessment. The findings may also aid in the prioritization of conservation efforts in afflicted areas or the decision to adapt to the effects of coastal erosion. This article presents a methodological framework and an erosion management prioritization system to help coastal managers, planners, and developers identify hazardous zones and improve coastal management plans using geospatial models.</description><subject>Climate change</subject><subject>Coastal effects</subject><subject>Coastal erosion</subject><subject>Coastal hazards</subject><subject>Coastal management</subject><subject>Coastal zone</subject><subject>Coastal zone management</subject><subject>Conservation</subject><subject>Erosion models</subject><subject>Erosion rates</subject><subject>Forestry</subject><subject>Geographic information systems</subject><subject>Geographical information systems</subject><subject>Global climate</subject><subject>Global warming</subject><subject>Hazard assessment</subject><subject>Hazards</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Sea level changes</subject><subject>Sea level rise</subject><subject>Simulation</subject><subject>Soil erosion</subject><subject>Technical Papers</subject><subject>Vulnerability</subject><issn>1527-6988</issn><issn>1527-6996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kF1PwjAUhhejiYj-h0Zv9GLYj7XdvCMLMhPARPS66bYWR0aL7TDBG_-6GyBeeW7OR973nJwnCK4RHCDI0P3tcJ6O7mbZAFHMQ5YkbADboAk5CXrH2emxjuPz4ML7JYQo4pD2gu9MfklXgqH3yvuVMg2QpgRTW6q6MgtgNRg56ytrdvO5kmCiPlUNXiqvwMaUyoFxbXNZg7SuVrJRIH2XZtEma8qqaY0eaOvaVvqmU1XNFkylkQvVXbsMzrSsvbo65H7w9jh6TbNw8jx-SoeTUBLCm5ASTXLGNE-IglpHBCcIykhjmBeQxjDGBdZIR3nBCKWR5JAkEealjGNWFDQi_eBmv3ft7MdG-UYs7caZ9qTAHMccUbhTPexVRfuzd0qLtWufcluBoOiAC9EBF7NMdEBFB1ccgLdmtjdLX6i_9b_O_40_L5GEhg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Bagheri, Milad</creator><creator>Ibrahim, Zelina Z.</creator><creator>Mansor, Shattri</creator><creator>Abd Manaf, Latifah</creator><creator>Akhir, M. F.</creator><creator>Talaat, W. I. A. W.</creator><creator>Wolf, Isabelle D.</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7TN</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H96</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230201</creationdate><title>Hazard Assessment and Modeling of Erosion and Sea Level Rise under Global Climate Change Conditions for Coastal City Management</title><author>Bagheri, Milad ; Ibrahim, Zelina Z. ; Mansor, Shattri ; Abd Manaf, Latifah ; Akhir, M. F. ; Talaat, W. I. A. W. ; Wolf, Isabelle D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-53f3b66f793e0ff432910a4f20bc058082c2f1f4bc63554a7039427da886cc543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Climate change</topic><topic>Coastal effects</topic><topic>Coastal erosion</topic><topic>Coastal hazards</topic><topic>Coastal management</topic><topic>Coastal zone</topic><topic>Coastal zone management</topic><topic>Conservation</topic><topic>Erosion models</topic><topic>Erosion rates</topic><topic>Forestry</topic><topic>Geographic information systems</topic><topic>Geographical information systems</topic><topic>Global climate</topic><topic>Global warming</topic><topic>Hazard assessment</topic><topic>Hazards</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Sea level changes</topic><topic>Sea level rise</topic><topic>Simulation</topic><topic>Soil erosion</topic><topic>Technical Papers</topic><topic>Vulnerability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagheri, Milad</creatorcontrib><creatorcontrib>Ibrahim, Zelina Z.</creatorcontrib><creatorcontrib>Mansor, Shattri</creatorcontrib><creatorcontrib>Abd Manaf, Latifah</creatorcontrib><creatorcontrib>Akhir, M. F.</creatorcontrib><creatorcontrib>Talaat, W. I. A. W.</creatorcontrib><creatorcontrib>Wolf, Isabelle D.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Natural hazards review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagheri, Milad</au><au>Ibrahim, Zelina Z.</au><au>Mansor, Shattri</au><au>Abd Manaf, Latifah</au><au>Akhir, M. F.</au><au>Talaat, W. I. A. W.</au><au>Wolf, Isabelle D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hazard Assessment and Modeling of Erosion and Sea Level Rise under Global Climate Change Conditions for Coastal City Management</atitle><jtitle>Natural hazards review</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><issn>1527-6988</issn><eissn>1527-6996</eissn><abstract>AbstractSea-level rise in response to climate change and global warming severely impacts coastal cities through increased soil erosion and other hazards. Therefore, simulating threats in coastal locations is critical for coastal city management and planning. The Nonlinear Autoregressive Exogenous-Neural Network (NARX-NN) was used in conjunction with the Bruun model and GIS methods to estimate the rate of sea-level rise, develop a coastal erosion model and coastal hazards maps, and simulate a sea-level increase with a maximum speed of 79.26 mm/year, and an average of about 25.34 mm/year, with a 1.48 m/year average erosion rate simulated from 2013 to 2020 along Merang kechil to Kuala Marang in Terengganu state coastal areas. According to the Bruun model, the areas most vulnerable to shoreline erosion are Kuala Nerus, Pendagan Buluh, and Kuala Ibai. Batu Rakit (Reach 1) has the highest rate of coastal erosion, at 28.16%, compared to 16.5 percent in Kuala Nerus (Reach 2) and 19.1% in Pengadang Buluh (Reach 3). The findings of this study might be utilized to build new coastal hazard erosion maps in a GIS framework, which could then be used as part of Malaysia’s East Coast zone vulnerability assessment. The findings may also aid in the prioritization of conservation efforts in afflicted areas or the decision to adapt to the effects of coastal erosion. This article presents a methodological framework and an erosion management prioritization system to help coastal managers, planners, and developers identify hazardous zones and improve coastal management plans using geospatial models.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)NH.1527-6996.0000593</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1527-6988 |
ispartof | Natural hazards review, 2023-02, Vol.24 (1) |
issn | 1527-6988 1527-6996 |
language | eng |
recordid | cdi_proquest_journals_2728715054 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Climate change Coastal effects Coastal erosion Coastal hazards Coastal management Coastal zone Coastal zone management Conservation Erosion models Erosion rates Forestry Geographic information systems Geographical information systems Global climate Global warming Hazard assessment Hazards Modelling Neural networks Sea level changes Sea level rise Simulation Soil erosion Technical Papers Vulnerability |
title | Hazard Assessment and Modeling of Erosion and Sea Level Rise under Global Climate Change Conditions for Coastal City Management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hazard%20Assessment%20and%20Modeling%20of%20Erosion%20and%20Sea%20Level%20Rise%20under%20Global%20Climate%20Change%20Conditions%20for%20Coastal%20City%20Management&rft.jtitle=Natural%20hazards%20review&rft.au=Bagheri,%20Milad&rft.date=2023-02-01&rft.volume=24&rft.issue=1&rft.issn=1527-6988&rft.eissn=1527-6996&rft_id=info:doi/10.1061/(ASCE)NH.1527-6996.0000593&rft_dat=%3Cproquest_cross%3E2728715054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728715054&rft_id=info:pmid/&rfr_iscdi=true |