HiddenGems: Efficient safety boundary detection with active learning

Evaluating safety performance in a resource-efficient way is crucial for the development of autonomous systems. Simulation of parameterized scenarios is a popular testing strategy but parameter sweeps can be prohibitively expensive. To address this, we propose HiddenGems: a sample-efficient method f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Petrov, Aleksandar, Carter, Fang, Pham, Khang Minh, You Hong Eng, James Guo Ming Fu, Scott Drew Pendleton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Petrov, Aleksandar
Carter, Fang
Pham, Khang Minh
You Hong Eng
James Guo Ming Fu
Scott Drew Pendleton
description Evaluating safety performance in a resource-efficient way is crucial for the development of autonomous systems. Simulation of parameterized scenarios is a popular testing strategy but parameter sweeps can be prohibitively expensive. To address this, we propose HiddenGems: a sample-efficient method for discovering the boundary between compliant and non-compliant behavior via active learning. Given a parameterized scenario, one or more compliance metrics, and a simulation oracle, HiddenGems maps the compliant and non-compliant domains of the scenario. The methodology enables critical test case identification, comparative analysis of different versions of the system under test, as well as verification of design objectives. We evaluate HiddenGems on a scenario with a jaywalker crossing in front of an autonomous vehicle and obtain compliance boundary estimates for collision, lane keep, and acceleration metrics individually and in combination, with 6 times fewer simulations than a parameter sweep. We also show how HiddenGems can be used to detect and rectify a failure mode for an unprotected turn with 86% fewer simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2728706405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728706405</sourcerecordid><originalsourceid>FETCH-proquest_journals_27287064053</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoW1p1T6bUsP6B3We6uJrbVNgv_Ph_6gJ7OgXMWJAHOd1mVA6xIGkLPGIOiBCF4Qo6NUQrtGR9hT2utTWfQRhqkxjjRqxutkn6iCiN20ThLPybeqZz9jXRA6a2xtw1ZajkETH9ck-2pvhya7Onda8QQ296N3s6phRKqkhU5E_y_6wtTxjrR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728706405</pqid></control><display><type>article</type><title>HiddenGems: Efficient safety boundary detection with active learning</title><source>Free E- Journals</source><creator>Petrov, Aleksandar ; Carter, Fang ; Pham, Khang Minh ; You Hong Eng ; James Guo Ming Fu ; Scott Drew Pendleton</creator><creatorcontrib>Petrov, Aleksandar ; Carter, Fang ; Pham, Khang Minh ; You Hong Eng ; James Guo Ming Fu ; Scott Drew Pendleton</creatorcontrib><description>Evaluating safety performance in a resource-efficient way is crucial for the development of autonomous systems. Simulation of parameterized scenarios is a popular testing strategy but parameter sweeps can be prohibitively expensive. To address this, we propose HiddenGems: a sample-efficient method for discovering the boundary between compliant and non-compliant behavior via active learning. Given a parameterized scenario, one or more compliance metrics, and a simulation oracle, HiddenGems maps the compliant and non-compliant domains of the scenario. The methodology enables critical test case identification, comparative analysis of different versions of the system under test, as well as verification of design objectives. We evaluate HiddenGems on a scenario with a jaywalker crossing in front of an autonomous vehicle and obtain compliance boundary estimates for collision, lane keep, and acceleration metrics individually and in combination, with 6 times fewer simulations than a parameter sweep. We also show how HiddenGems can be used to detect and rectify a failure mode for an unprotected turn with 86% fewer simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Active learning ; Failure modes ; Learning ; Parameterization ; Parameters ; Performance evaluation ; Safety ; Simulation</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Petrov, Aleksandar</creatorcontrib><creatorcontrib>Carter, Fang</creatorcontrib><creatorcontrib>Pham, Khang Minh</creatorcontrib><creatorcontrib>You Hong Eng</creatorcontrib><creatorcontrib>James Guo Ming Fu</creatorcontrib><creatorcontrib>Scott Drew Pendleton</creatorcontrib><title>HiddenGems: Efficient safety boundary detection with active learning</title><title>arXiv.org</title><description>Evaluating safety performance in a resource-efficient way is crucial for the development of autonomous systems. Simulation of parameterized scenarios is a popular testing strategy but parameter sweeps can be prohibitively expensive. To address this, we propose HiddenGems: a sample-efficient method for discovering the boundary between compliant and non-compliant behavior via active learning. Given a parameterized scenario, one or more compliance metrics, and a simulation oracle, HiddenGems maps the compliant and non-compliant domains of the scenario. The methodology enables critical test case identification, comparative analysis of different versions of the system under test, as well as verification of design objectives. We evaluate HiddenGems on a scenario with a jaywalker crossing in front of an autonomous vehicle and obtain compliance boundary estimates for collision, lane keep, and acceleration metrics individually and in combination, with 6 times fewer simulations than a parameter sweep. We also show how HiddenGems can be used to detect and rectify a failure mode for an unprotected turn with 86% fewer simulations.</description><subject>Active learning</subject><subject>Failure modes</subject><subject>Learning</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Safety</subject><subject>Simulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoW1p1T6bUsP6B3We6uJrbVNgv_Ph_6gJ7OgXMWJAHOd1mVA6xIGkLPGIOiBCF4Qo6NUQrtGR9hT2utTWfQRhqkxjjRqxutkn6iCiN20ThLPybeqZz9jXRA6a2xtw1ZajkETH9ck-2pvhya7Onda8QQ296N3s6phRKqkhU5E_y_6wtTxjrR</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Petrov, Aleksandar</creator><creator>Carter, Fang</creator><creator>Pham, Khang Minh</creator><creator>You Hong Eng</creator><creator>James Guo Ming Fu</creator><creator>Scott Drew Pendleton</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221025</creationdate><title>HiddenGems: Efficient safety boundary detection with active learning</title><author>Petrov, Aleksandar ; Carter, Fang ; Pham, Khang Minh ; You Hong Eng ; James Guo Ming Fu ; Scott Drew Pendleton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27287064053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active learning</topic><topic>Failure modes</topic><topic>Learning</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Safety</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Petrov, Aleksandar</creatorcontrib><creatorcontrib>Carter, Fang</creatorcontrib><creatorcontrib>Pham, Khang Minh</creatorcontrib><creatorcontrib>You Hong Eng</creatorcontrib><creatorcontrib>James Guo Ming Fu</creatorcontrib><creatorcontrib>Scott Drew Pendleton</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrov, Aleksandar</au><au>Carter, Fang</au><au>Pham, Khang Minh</au><au>You Hong Eng</au><au>James Guo Ming Fu</au><au>Scott Drew Pendleton</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>HiddenGems: Efficient safety boundary detection with active learning</atitle><jtitle>arXiv.org</jtitle><date>2022-10-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Evaluating safety performance in a resource-efficient way is crucial for the development of autonomous systems. Simulation of parameterized scenarios is a popular testing strategy but parameter sweeps can be prohibitively expensive. To address this, we propose HiddenGems: a sample-efficient method for discovering the boundary between compliant and non-compliant behavior via active learning. Given a parameterized scenario, one or more compliance metrics, and a simulation oracle, HiddenGems maps the compliant and non-compliant domains of the scenario. The methodology enables critical test case identification, comparative analysis of different versions of the system under test, as well as verification of design objectives. We evaluate HiddenGems on a scenario with a jaywalker crossing in front of an autonomous vehicle and obtain compliance boundary estimates for collision, lane keep, and acceleration metrics individually and in combination, with 6 times fewer simulations than a parameter sweep. We also show how HiddenGems can be used to detect and rectify a failure mode for an unprotected turn with 86% fewer simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2728706405
source Free E- Journals
subjects Active learning
Failure modes
Learning
Parameterization
Parameters
Performance evaluation
Safety
Simulation
title HiddenGems: Efficient safety boundary detection with active learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=HiddenGems:%20Efficient%20safety%20boundary%20detection%20with%20active%20learning&rft.jtitle=arXiv.org&rft.au=Petrov,%20Aleksandar&rft.date=2022-10-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2728706405%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728706405&rft_id=info:pmid/&rfr_iscdi=true