Graphs of Linear Growth have Bounded Treewidth

A graph class \(\mathcal{G}\) has linear growth if, for each graph \(G \in \mathcal{G}\) and every positive integer \(r\), every subgraph of \(G\) with radius at most \(r\) contains \(O(r)\) vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Campbell, Rutger, Distel, Marc, J Pascal Gollin, Harvey, Daniel J, Hendrey, Kevin, Hickingbotham, Robert, Mohar, Bojan, Wood, David R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Campbell, Rutger
Distel, Marc
J Pascal Gollin
Harvey, Daniel J
Hendrey, Kevin
Hickingbotham, Robert
Mohar, Bojan
Wood, David R
description A graph class \(\mathcal{G}\) has linear growth if, for each graph \(G \in \mathcal{G}\) and every positive integer \(r\), every subgraph of \(G\) with radius at most \(r\) contains \(O(r)\) vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2728700431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728700431</sourcerecordid><originalsourceid>FETCH-proquest_journals_27287004313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcy9KLMgoVshPU_DJzEtNLFJwL8ovL8lQyEgsS1Vwyi_NS0lNUQgpSk0tz0wpyeBhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjcyMLcwMDE2NDY-JUAQC9oDHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728700431</pqid></control><display><type>article</type><title>Graphs of Linear Growth have Bounded Treewidth</title><source>Free E- Journals</source><creator>Campbell, Rutger ; Distel, Marc ; J Pascal Gollin ; Harvey, Daniel J ; Hendrey, Kevin ; Hickingbotham, Robert ; Mohar, Bojan ; Wood, David R</creator><creatorcontrib>Campbell, Rutger ; Distel, Marc ; J Pascal Gollin ; Harvey, Daniel J ; Hendrey, Kevin ; Hickingbotham, Robert ; Mohar, Bojan ; Wood, David R</creatorcontrib><description>A graph class \(\mathcal{G}\) has linear growth if, for each graph \(G \in \mathcal{G}\) and every positive integer \(r\), every subgraph of \(G\) with radius at most \(r\) contains \(O(r)\) vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Graph theory</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Campbell, Rutger</creatorcontrib><creatorcontrib>Distel, Marc</creatorcontrib><creatorcontrib>J Pascal Gollin</creatorcontrib><creatorcontrib>Harvey, Daniel J</creatorcontrib><creatorcontrib>Hendrey, Kevin</creatorcontrib><creatorcontrib>Hickingbotham, Robert</creatorcontrib><creatorcontrib>Mohar, Bojan</creatorcontrib><creatorcontrib>Wood, David R</creatorcontrib><title>Graphs of Linear Growth have Bounded Treewidth</title><title>arXiv.org</title><description>A graph class \(\mathcal{G}\) has linear growth if, for each graph \(G \in \mathcal{G}\) and every positive integer \(r\), every subgraph of \(G\) with radius at most \(r\) contains \(O(r)\) vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.</description><subject>Apexes</subject><subject>Graph theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcy9KLMgoVshPU_DJzEtNLFJwL8ovL8lQyEgsS1Vwyi_NS0lNUQgpSk0tz0wpyeBhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjcyMLcwMDE2NDY-JUAQC9oDHc</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Campbell, Rutger</creator><creator>Distel, Marc</creator><creator>J Pascal Gollin</creator><creator>Harvey, Daniel J</creator><creator>Hendrey, Kevin</creator><creator>Hickingbotham, Robert</creator><creator>Mohar, Bojan</creator><creator>Wood, David R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221025</creationdate><title>Graphs of Linear Growth have Bounded Treewidth</title><author>Campbell, Rutger ; Distel, Marc ; J Pascal Gollin ; Harvey, Daniel J ; Hendrey, Kevin ; Hickingbotham, Robert ; Mohar, Bojan ; Wood, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27287004313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Graph theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Campbell, Rutger</creatorcontrib><creatorcontrib>Distel, Marc</creatorcontrib><creatorcontrib>J Pascal Gollin</creatorcontrib><creatorcontrib>Harvey, Daniel J</creatorcontrib><creatorcontrib>Hendrey, Kevin</creatorcontrib><creatorcontrib>Hickingbotham, Robert</creatorcontrib><creatorcontrib>Mohar, Bojan</creatorcontrib><creatorcontrib>Wood, David R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, Rutger</au><au>Distel, Marc</au><au>J Pascal Gollin</au><au>Harvey, Daniel J</au><au>Hendrey, Kevin</au><au>Hickingbotham, Robert</au><au>Mohar, Bojan</au><au>Wood, David R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Graphs of Linear Growth have Bounded Treewidth</atitle><jtitle>arXiv.org</jtitle><date>2022-10-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A graph class \(\mathcal{G}\) has linear growth if, for each graph \(G \in \mathcal{G}\) and every positive integer \(r\), every subgraph of \(G\) with radius at most \(r\) contains \(O(r)\) vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2728700431
source Free E- Journals
subjects Apexes
Graph theory
title Graphs of Linear Growth have Bounded Treewidth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Graphs%20of%20Linear%20Growth%20have%20Bounded%20Treewidth&rft.jtitle=arXiv.org&rft.au=Campbell,%20Rutger&rft.date=2022-10-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2728700431%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728700431&rft_id=info:pmid/&rfr_iscdi=true