Graphs of Linear Growth have Bounded Treewidth
A graph class \(\mathcal{G}\) has linear growth if, for each graph \(G \in \mathcal{G}\) and every positive integer \(r\), every subgraph of \(G\) with radius at most \(r\) contains \(O(r)\) vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph class \(\mathcal{G}\) has linear growth if, for each graph \(G \in \mathcal{G}\) and every positive integer \(r\), every subgraph of \(G\) with radius at most \(r\) contains \(O(r)\) vertices. In this paper, we show that every graph class with linear growth has bounded treewidth. |
---|---|
ISSN: | 2331-8422 |