Graphs of Linear Growth have Bounded Treewidth

A graph class \(\mathcal{G}\) has linear growth if, for each graph \(G \in \mathcal{G}\) and every positive integer \(r\), every subgraph of \(G\) with radius at most \(r\) contains \(O(r)\) vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Campbell, Rutger, Distel, Marc, J Pascal Gollin, Harvey, Daniel J, Hendrey, Kevin, Hickingbotham, Robert, Mohar, Bojan, Wood, David R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph class \(\mathcal{G}\) has linear growth if, for each graph \(G \in \mathcal{G}\) and every positive integer \(r\), every subgraph of \(G\) with radius at most \(r\) contains \(O(r)\) vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.
ISSN:2331-8422