UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality
Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors)....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2022-12, Vol.28 (12), p.4240-4251 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4251 |
---|---|
container_issue | 12 |
container_start_page | 4240 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 28 |
creator | Parger, Mathias Tang, Chengcheng Xu, Yuanlu Twigg, Christopher D. Tao, Lingling Li, Yijing Wang, Robert Steinberger, Markus |
description | Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors). In this article, we propose a new data-driven framework for egocentric body tracking, targeting challenges of omnipresent occlusions in optimization-based methods (e.g., inverse kinematics solvers). We first collect a large-scale motion capture dataset with both body and finger motions using optical markers and inertial sensors. This dataset focuses on social scenarios and captures ground truth poses under self-occlusions and body-hand interactions. We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts. Our experiments show that our method is able to generate high-fidelity embodied poses by applying the proposed method to the task of real-time egocentric body tracking, finger motion synthesis, and 3-point inverse kinematics. |
doi_str_mv | 10.1109/TVCG.2021.3085407 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2728572137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444887</ieee_id><sourcerecordid>2536466490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-fb3b809b7134a1b234540016fea2c0f8730f67a351d8a9af9ad8d4d4b11f37c03</originalsourceid><addsrcrecordid>eNpdkLFOwzAQhi0EoqXwAIglEgtLyp3t2AkbqtqCVFGE2q6Wk9jIVZoUOxn69qRqxcB0N3z_6b-PkHuEMSJkz6vNZD6mQHHMIE04yAsyxIxjDAmIy34HKWMqqBiQmxC2AMh5ml2TAeMgUHI-JLP1x3LyEq3r0vjQ6rp09Xe0LIqqC66pI9v4aLrLm9KZMvr0Jpi6MJGro43zbaer6MvoyrWHW3JldRXM3XmOyHo2XU3e4sVy_j55XcQFo6KNbc7yFLJcIuMac8p43xpQWKNpATaVDKyQmiVYpjrTNtNlWvKS54iWyQLYiDyd7u5989OZ0KqdC4WpKl2bpguKJkxwIXh2RB__odum83XfTlFJ00RSZLKn8EQVvgnBG6v23u20PygEdZSsjpLVUbI6S-4zD6eMM8b88Rnv5fYf_AL0AnR_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728572137</pqid></control><display><type>article</type><title>UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality</title><source>IEEE Electronic Library (IEL)</source><creator>Parger, Mathias ; Tang, Chengcheng ; Xu, Yuanlu ; Twigg, Christopher D. ; Tao, Lingling ; Li, Yijing ; Wang, Robert ; Steinberger, Markus</creator><creatorcontrib>Parger, Mathias ; Tang, Chengcheng ; Xu, Yuanlu ; Twigg, Christopher D. ; Tao, Lingling ; Li, Yijing ; Wang, Robert ; Steinberger, Markus</creatorcontrib><description>Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors). In this article, we propose a new data-driven framework for egocentric body tracking, targeting challenges of omnipresent occlusions in optimization-based methods (e.g., inverse kinematics solvers). We first collect a large-scale motion capture dataset with both body and finger motions using optical markers and inertial sensors. This dataset focuses on social scenarios and captures ground truth poses under self-occlusions and body-hand interactions. We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts. Our experiments show that our method is able to generate high-fidelity embodied poses by applying the proposed method to the task of real-time egocentric body tracking, finger motion synthesis, and 3-point inverse kinematics.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2021.3085407</identifier><identifier>PMID: 34061744</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Body parts ; body tracking ; Cameras ; Datasets ; embodied presence ; Headphones ; Inertial sensing devices ; Inverse kinematics ; Kinematics ; Machine learning ; Motion capture ; Occlusion ; Optical sensors ; Optimization ; Pose estimation ; Three-dimensional displays ; Tracking ; Videos ; Virtual environments ; Virtual reality</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-12, Vol.28 (12), p.4240-4251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-fb3b809b7134a1b234540016fea2c0f8730f67a351d8a9af9ad8d4d4b11f37c03</citedby><cites>FETCH-LOGICAL-c326t-fb3b809b7134a1b234540016fea2c0f8730f67a351d8a9af9ad8d4d4b11f37c03</cites><orcidid>0000-0002-4875-6670 ; 0000-0002-9074-4374 ; 0000-0001-6041-2339 ; 0000-0002-7095-1018 ; 0000-0001-5977-8536 ; 0000-0001-9155-6503 ; 0000-0002-9298-7337 ; 0000-0003-3778-2520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parger, Mathias</creatorcontrib><creatorcontrib>Tang, Chengcheng</creatorcontrib><creatorcontrib>Xu, Yuanlu</creatorcontrib><creatorcontrib>Twigg, Christopher D.</creatorcontrib><creatorcontrib>Tao, Lingling</creatorcontrib><creatorcontrib>Li, Yijing</creatorcontrib><creatorcontrib>Wang, Robert</creatorcontrib><creatorcontrib>Steinberger, Markus</creatorcontrib><title>UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><description>Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors). In this article, we propose a new data-driven framework for egocentric body tracking, targeting challenges of omnipresent occlusions in optimization-based methods (e.g., inverse kinematics solvers). We first collect a large-scale motion capture dataset with both body and finger motions using optical markers and inertial sensors. This dataset focuses on social scenarios and captures ground truth poses under self-occlusions and body-hand interactions. We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts. Our experiments show that our method is able to generate high-fidelity embodied poses by applying the proposed method to the task of real-time egocentric body tracking, finger motion synthesis, and 3-point inverse kinematics.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Body parts</subject><subject>body tracking</subject><subject>Cameras</subject><subject>Datasets</subject><subject>embodied presence</subject><subject>Headphones</subject><subject>Inertial sensing devices</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Machine learning</subject><subject>Motion capture</subject><subject>Occlusion</subject><subject>Optical sensors</subject><subject>Optimization</subject><subject>Pose estimation</subject><subject>Three-dimensional displays</subject><subject>Tracking</subject><subject>Videos</subject><subject>Virtual environments</subject><subject>Virtual reality</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLFOwzAQhi0EoqXwAIglEgtLyp3t2AkbqtqCVFGE2q6Wk9jIVZoUOxn69qRqxcB0N3z_6b-PkHuEMSJkz6vNZD6mQHHMIE04yAsyxIxjDAmIy34HKWMqqBiQmxC2AMh5ml2TAeMgUHI-JLP1x3LyEq3r0vjQ6rp09Xe0LIqqC66pI9v4aLrLm9KZMvr0Jpi6MJGro43zbaer6MvoyrWHW3JldRXM3XmOyHo2XU3e4sVy_j55XcQFo6KNbc7yFLJcIuMac8p43xpQWKNpATaVDKyQmiVYpjrTNtNlWvKS54iWyQLYiDyd7u5989OZ0KqdC4WpKl2bpguKJkxwIXh2RB__odum83XfTlFJ00RSZLKn8EQVvgnBG6v23u20PygEdZSsjpLVUbI6S-4zD6eMM8b88Rnv5fYf_AL0AnR_</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Parger, Mathias</creator><creator>Tang, Chengcheng</creator><creator>Xu, Yuanlu</creator><creator>Twigg, Christopher D.</creator><creator>Tao, Lingling</creator><creator>Li, Yijing</creator><creator>Wang, Robert</creator><creator>Steinberger, Markus</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4875-6670</orcidid><orcidid>https://orcid.org/0000-0002-9074-4374</orcidid><orcidid>https://orcid.org/0000-0001-6041-2339</orcidid><orcidid>https://orcid.org/0000-0002-7095-1018</orcidid><orcidid>https://orcid.org/0000-0001-5977-8536</orcidid><orcidid>https://orcid.org/0000-0001-9155-6503</orcidid><orcidid>https://orcid.org/0000-0002-9298-7337</orcidid><orcidid>https://orcid.org/0000-0003-3778-2520</orcidid></search><sort><creationdate>20221201</creationdate><title>UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality</title><author>Parger, Mathias ; Tang, Chengcheng ; Xu, Yuanlu ; Twigg, Christopher D. ; Tao, Lingling ; Li, Yijing ; Wang, Robert ; Steinberger, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-fb3b809b7134a1b234540016fea2c0f8730f67a351d8a9af9ad8d4d4b11f37c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Body parts</topic><topic>body tracking</topic><topic>Cameras</topic><topic>Datasets</topic><topic>embodied presence</topic><topic>Headphones</topic><topic>Inertial sensing devices</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Machine learning</topic><topic>Motion capture</topic><topic>Occlusion</topic><topic>Optical sensors</topic><topic>Optimization</topic><topic>Pose estimation</topic><topic>Three-dimensional displays</topic><topic>Tracking</topic><topic>Videos</topic><topic>Virtual environments</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parger, Mathias</creatorcontrib><creatorcontrib>Tang, Chengcheng</creatorcontrib><creatorcontrib>Xu, Yuanlu</creatorcontrib><creatorcontrib>Twigg, Christopher D.</creatorcontrib><creatorcontrib>Tao, Lingling</creatorcontrib><creatorcontrib>Li, Yijing</creatorcontrib><creatorcontrib>Wang, Robert</creatorcontrib><creatorcontrib>Steinberger, Markus</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parger, Mathias</au><au>Tang, Chengcheng</au><au>Xu, Yuanlu</au><au>Twigg, Christopher D.</au><au>Tao, Lingling</au><au>Li, Yijing</au><au>Wang, Robert</au><au>Steinberger, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>28</volume><issue>12</issue><spage>4240</spage><epage>4251</epage><pages>4240-4251</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors). In this article, we propose a new data-driven framework for egocentric body tracking, targeting challenges of omnipresent occlusions in optimization-based methods (e.g., inverse kinematics solvers). We first collect a large-scale motion capture dataset with both body and finger motions using optical markers and inertial sensors. This dataset focuses on social scenarios and captures ground truth poses under self-occlusions and body-hand interactions. We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts. Our experiments show that our method is able to generate high-fidelity embodied poses by applying the proposed method to the task of real-time egocentric body tracking, finger motion synthesis, and 3-point inverse kinematics.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34061744</pmid><doi>10.1109/TVCG.2021.3085407</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4875-6670</orcidid><orcidid>https://orcid.org/0000-0002-9074-4374</orcidid><orcidid>https://orcid.org/0000-0001-6041-2339</orcidid><orcidid>https://orcid.org/0000-0002-7095-1018</orcidid><orcidid>https://orcid.org/0000-0001-5977-8536</orcidid><orcidid>https://orcid.org/0000-0001-9155-6503</orcidid><orcidid>https://orcid.org/0000-0002-9298-7337</orcidid><orcidid>https://orcid.org/0000-0003-3778-2520</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2022-12, Vol.28 (12), p.4240-4251 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_journals_2728572137 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Body parts body tracking Cameras Datasets embodied presence Headphones Inertial sensing devices Inverse kinematics Kinematics Machine learning Motion capture Occlusion Optical sensors Optimization Pose estimation Three-dimensional displays Tracking Videos Virtual environments Virtual reality |
title | UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UNOC:%20Understanding%20Occlusion%20for%20Embodied%20Presence%20in%20Virtual%20Reality&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Parger,%20Mathias&rft.date=2022-12-01&rft.volume=28&rft.issue=12&rft.spage=4240&rft.epage=4251&rft.pages=4240-4251&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2021.3085407&rft_dat=%3Cproquest_RIE%3E2536466490%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728572137&rft_id=info:pmid/34061744&rft_ieee_id=9444887&rfr_iscdi=true |