UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality

Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2022-12, Vol.28 (12), p.4240-4251
Hauptverfasser: Parger, Mathias, Tang, Chengcheng, Xu, Yuanlu, Twigg, Christopher D., Tao, Lingling, Li, Yijing, Wang, Robert, Steinberger, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4251
container_issue 12
container_start_page 4240
container_title IEEE transactions on visualization and computer graphics
container_volume 28
creator Parger, Mathias
Tang, Chengcheng
Xu, Yuanlu
Twigg, Christopher D.
Tao, Lingling
Li, Yijing
Wang, Robert
Steinberger, Markus
description Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors). In this article, we propose a new data-driven framework for egocentric body tracking, targeting challenges of omnipresent occlusions in optimization-based methods (e.g., inverse kinematics solvers). We first collect a large-scale motion capture dataset with both body and finger motions using optical markers and inertial sensors. This dataset focuses on social scenarios and captures ground truth poses under self-occlusions and body-hand interactions. We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts. Our experiments show that our method is able to generate high-fidelity embodied poses by applying the proposed method to the task of real-time egocentric body tracking, finger motion synthesis, and 3-point inverse kinematics.
doi_str_mv 10.1109/TVCG.2021.3085407
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2728572137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444887</ieee_id><sourcerecordid>2536466490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-fb3b809b7134a1b234540016fea2c0f8730f67a351d8a9af9ad8d4d4b11f37c03</originalsourceid><addsrcrecordid>eNpdkLFOwzAQhi0EoqXwAIglEgtLyp3t2AkbqtqCVFGE2q6Wk9jIVZoUOxn69qRqxcB0N3z_6b-PkHuEMSJkz6vNZD6mQHHMIE04yAsyxIxjDAmIy34HKWMqqBiQmxC2AMh5ml2TAeMgUHI-JLP1x3LyEq3r0vjQ6rp09Xe0LIqqC66pI9v4aLrLm9KZMvr0Jpi6MJGro43zbaer6MvoyrWHW3JldRXM3XmOyHo2XU3e4sVy_j55XcQFo6KNbc7yFLJcIuMac8p43xpQWKNpATaVDKyQmiVYpjrTNtNlWvKS54iWyQLYiDyd7u5989OZ0KqdC4WpKl2bpguKJkxwIXh2RB__odum83XfTlFJ00RSZLKn8EQVvgnBG6v23u20PygEdZSsjpLVUbI6S-4zD6eMM8b88Rnv5fYf_AL0AnR_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728572137</pqid></control><display><type>article</type><title>UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality</title><source>IEEE Electronic Library (IEL)</source><creator>Parger, Mathias ; Tang, Chengcheng ; Xu, Yuanlu ; Twigg, Christopher D. ; Tao, Lingling ; Li, Yijing ; Wang, Robert ; Steinberger, Markus</creator><creatorcontrib>Parger, Mathias ; Tang, Chengcheng ; Xu, Yuanlu ; Twigg, Christopher D. ; Tao, Lingling ; Li, Yijing ; Wang, Robert ; Steinberger, Markus</creatorcontrib><description>Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors). In this article, we propose a new data-driven framework for egocentric body tracking, targeting challenges of omnipresent occlusions in optimization-based methods (e.g., inverse kinematics solvers). We first collect a large-scale motion capture dataset with both body and finger motions using optical markers and inertial sensors. This dataset focuses on social scenarios and captures ground truth poses under self-occlusions and body-hand interactions. We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts. Our experiments show that our method is able to generate high-fidelity embodied poses by applying the proposed method to the task of real-time egocentric body tracking, finger motion synthesis, and 3-point inverse kinematics.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2021.3085407</identifier><identifier>PMID: 34061744</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Body parts ; body tracking ; Cameras ; Datasets ; embodied presence ; Headphones ; Inertial sensing devices ; Inverse kinematics ; Kinematics ; Machine learning ; Motion capture ; Occlusion ; Optical sensors ; Optimization ; Pose estimation ; Three-dimensional displays ; Tracking ; Videos ; Virtual environments ; Virtual reality</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-12, Vol.28 (12), p.4240-4251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-fb3b809b7134a1b234540016fea2c0f8730f67a351d8a9af9ad8d4d4b11f37c03</citedby><cites>FETCH-LOGICAL-c326t-fb3b809b7134a1b234540016fea2c0f8730f67a351d8a9af9ad8d4d4b11f37c03</cites><orcidid>0000-0002-4875-6670 ; 0000-0002-9074-4374 ; 0000-0001-6041-2339 ; 0000-0002-7095-1018 ; 0000-0001-5977-8536 ; 0000-0001-9155-6503 ; 0000-0002-9298-7337 ; 0000-0003-3778-2520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parger, Mathias</creatorcontrib><creatorcontrib>Tang, Chengcheng</creatorcontrib><creatorcontrib>Xu, Yuanlu</creatorcontrib><creatorcontrib>Twigg, Christopher D.</creatorcontrib><creatorcontrib>Tao, Lingling</creatorcontrib><creatorcontrib>Li, Yijing</creatorcontrib><creatorcontrib>Wang, Robert</creatorcontrib><creatorcontrib>Steinberger, Markus</creatorcontrib><title>UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><description>Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors). In this article, we propose a new data-driven framework for egocentric body tracking, targeting challenges of omnipresent occlusions in optimization-based methods (e.g., inverse kinematics solvers). We first collect a large-scale motion capture dataset with both body and finger motions using optical markers and inertial sensors. This dataset focuses on social scenarios and captures ground truth poses under self-occlusions and body-hand interactions. We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts. Our experiments show that our method is able to generate high-fidelity embodied poses by applying the proposed method to the task of real-time egocentric body tracking, finger motion synthesis, and 3-point inverse kinematics.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Body parts</subject><subject>body tracking</subject><subject>Cameras</subject><subject>Datasets</subject><subject>embodied presence</subject><subject>Headphones</subject><subject>Inertial sensing devices</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Machine learning</subject><subject>Motion capture</subject><subject>Occlusion</subject><subject>Optical sensors</subject><subject>Optimization</subject><subject>Pose estimation</subject><subject>Three-dimensional displays</subject><subject>Tracking</subject><subject>Videos</subject><subject>Virtual environments</subject><subject>Virtual reality</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLFOwzAQhi0EoqXwAIglEgtLyp3t2AkbqtqCVFGE2q6Wk9jIVZoUOxn69qRqxcB0N3z_6b-PkHuEMSJkz6vNZD6mQHHMIE04yAsyxIxjDAmIy34HKWMqqBiQmxC2AMh5ml2TAeMgUHI-JLP1x3LyEq3r0vjQ6rp09Xe0LIqqC66pI9v4aLrLm9KZMvr0Jpi6MJGro43zbaer6MvoyrWHW3JldRXM3XmOyHo2XU3e4sVy_j55XcQFo6KNbc7yFLJcIuMac8p43xpQWKNpATaVDKyQmiVYpjrTNtNlWvKS54iWyQLYiDyd7u5989OZ0KqdC4WpKl2bpguKJkxwIXh2RB__odum83XfTlFJ00RSZLKn8EQVvgnBG6v23u20PygEdZSsjpLVUbI6S-4zD6eMM8b88Rnv5fYf_AL0AnR_</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Parger, Mathias</creator><creator>Tang, Chengcheng</creator><creator>Xu, Yuanlu</creator><creator>Twigg, Christopher D.</creator><creator>Tao, Lingling</creator><creator>Li, Yijing</creator><creator>Wang, Robert</creator><creator>Steinberger, Markus</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4875-6670</orcidid><orcidid>https://orcid.org/0000-0002-9074-4374</orcidid><orcidid>https://orcid.org/0000-0001-6041-2339</orcidid><orcidid>https://orcid.org/0000-0002-7095-1018</orcidid><orcidid>https://orcid.org/0000-0001-5977-8536</orcidid><orcidid>https://orcid.org/0000-0001-9155-6503</orcidid><orcidid>https://orcid.org/0000-0002-9298-7337</orcidid><orcidid>https://orcid.org/0000-0003-3778-2520</orcidid></search><sort><creationdate>20221201</creationdate><title>UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality</title><author>Parger, Mathias ; Tang, Chengcheng ; Xu, Yuanlu ; Twigg, Christopher D. ; Tao, Lingling ; Li, Yijing ; Wang, Robert ; Steinberger, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-fb3b809b7134a1b234540016fea2c0f8730f67a351d8a9af9ad8d4d4b11f37c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Body parts</topic><topic>body tracking</topic><topic>Cameras</topic><topic>Datasets</topic><topic>embodied presence</topic><topic>Headphones</topic><topic>Inertial sensing devices</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Machine learning</topic><topic>Motion capture</topic><topic>Occlusion</topic><topic>Optical sensors</topic><topic>Optimization</topic><topic>Pose estimation</topic><topic>Three-dimensional displays</topic><topic>Tracking</topic><topic>Videos</topic><topic>Virtual environments</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parger, Mathias</creatorcontrib><creatorcontrib>Tang, Chengcheng</creatorcontrib><creatorcontrib>Xu, Yuanlu</creatorcontrib><creatorcontrib>Twigg, Christopher D.</creatorcontrib><creatorcontrib>Tao, Lingling</creatorcontrib><creatorcontrib>Li, Yijing</creatorcontrib><creatorcontrib>Wang, Robert</creatorcontrib><creatorcontrib>Steinberger, Markus</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parger, Mathias</au><au>Tang, Chengcheng</au><au>Xu, Yuanlu</au><au>Twigg, Christopher D.</au><au>Tao, Lingling</au><au>Li, Yijing</au><au>Wang, Robert</au><au>Steinberger, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>28</volume><issue>12</issue><spage>4240</spage><epage>4251</epage><pages>4240-4251</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Tracking body and hand motions in 3D space is essential for social and self-presence in augmented and virtual environments. Unlike the popular 3D pose estimation setting, the problem is often formulated as egocentric tracking based on embodied perception (e.g., egocentric cameras, handheld sensors). In this article, we propose a new data-driven framework for egocentric body tracking, targeting challenges of omnipresent occlusions in optimization-based methods (e.g., inverse kinematics solvers). We first collect a large-scale motion capture dataset with both body and finger motions using optical markers and inertial sensors. This dataset focuses on social scenarios and captures ground truth poses under self-occlusions and body-hand interactions. We then simulate the occlusion patterns in head-mounted camera views on the captured ground truth using a ray casting algorithm and learn a deep neural network to infer the occluded body parts. Our experiments show that our method is able to generate high-fidelity embodied poses by applying the proposed method to the task of real-time egocentric body tracking, finger motion synthesis, and 3-point inverse kinematics.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34061744</pmid><doi>10.1109/TVCG.2021.3085407</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4875-6670</orcidid><orcidid>https://orcid.org/0000-0002-9074-4374</orcidid><orcidid>https://orcid.org/0000-0001-6041-2339</orcidid><orcidid>https://orcid.org/0000-0002-7095-1018</orcidid><orcidid>https://orcid.org/0000-0001-5977-8536</orcidid><orcidid>https://orcid.org/0000-0001-9155-6503</orcidid><orcidid>https://orcid.org/0000-0002-9298-7337</orcidid><orcidid>https://orcid.org/0000-0003-3778-2520</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2022-12, Vol.28 (12), p.4240-4251
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_journals_2728572137
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Body parts
body tracking
Cameras
Datasets
embodied presence
Headphones
Inertial sensing devices
Inverse kinematics
Kinematics
Machine learning
Motion capture
Occlusion
Optical sensors
Optimization
Pose estimation
Three-dimensional displays
Tracking
Videos
Virtual environments
Virtual reality
title UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UNOC:%20Understanding%20Occlusion%20for%20Embodied%20Presence%20in%20Virtual%20Reality&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Parger,%20Mathias&rft.date=2022-12-01&rft.volume=28&rft.issue=12&rft.spage=4240&rft.epage=4251&rft.pages=4240-4251&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2021.3085407&rft_dat=%3Cproquest_RIE%3E2536466490%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728572137&rft_id=info:pmid/34061744&rft_ieee_id=9444887&rfr_iscdi=true